
Summary Notes on Tensors

The following notes contain a summary of the material you need to know on
tensors. The presentation closely follows that of the set book ‘Introducing
Einstein’s Relativity’ by Ray d’Inverno. The equations numbered in bold
are the same as the numbers for the corresponding equation in the set book.
However these notes are not a substitute for reading the book, but simply
summarise the key points.

Part A: TENSOR ALGEBRA

§1 Manifolds and Coordinates

We will work with spaces which are locally like n-dimensional space. We call
such objects manifolds.

A point on a manifold is specified by giving n coordinates:

(x1, x2, · · · , xn)

or more briefly as
xa, a = 1, · · · , n (1)

However the choice of coordinates is not unique. Let x′1, x′2, · · · , x′n be an-
other set of coordinates, then we can write the new coordinates in terms of
the old and vice-versa:

x′1 = f(x1, x2, · · · , xn)

x′2 = g(x1, x2, · · · , xn)
... =

...

x′n = h(x1, x2, · · · , xn)

We write this as
x′a = x′a(x) (5.6)

In transforming between coordinate systems it is useful to calculate the n×n
transformation matrix

(
∂x′a

∂xb

)
=




∂x′1
∂x1 · · · ∂x′1

∂xn

...
...

∂x′n
∂x1 · · · ∂x′n

∂xn


 (5.7)
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The determinant of this matrix is the Jacobian

J ′ = det
(

∂x′a

∂xb

)
(2)

(Note: we write this as J ′ rather than J as it is the Jacobian for the trans-
formation to the x′ coordinates).

We can also express the x coordinates in terms of the x′ and write

xa = xa(x′)

Because this transformation is the inverse of (5.6) the corresponding trans-
formation matrix is the inverse of the matrix (5.7). We can write this in
components as

n∑
c=1

(
∂x′a

∂xc

)(
∂xc

∂x′b

)
= δa

b (3)

where the Kronecker delta δa
b is defined to be given by

δa
b =

{
1, if a = b
0, if a 6= b

and represents the components of the identity matrix.
Since a matrix is an inverse for multiplication on either the left or right

we also have
n∑

c=1

(
∂xa

∂x′c

)(
∂x′c

∂xb

)
= δa

b (4)

§2 Curves and Surfaces

Curves

Let t be some real parameter, then as t varies xa(t) traces out a curve. For
example xa(t) might be the position of a particle at time t, then as t varies
xa(t) moves along a curve (called the worldline of the particle).
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x(t)

Surfaces

In three dimensions a surface is a (smooth) 2-dimensional subspace. In n-
dimensions a surface (or more properly a hypersurface) is a (n−1)-dimensional
subspace. We can define a hypersurface by requiring that the coordinates of
the points on a surface satisfy a constraint

φ(x1, x2, · · · , xn) = 0 (5)

For example if (x1, x2, x3) are cartesian coordinates in 3-dimensions and

φ(x1, x2, x3) = (x1)2 + (x2)2 + (x3)2 − a2

then

φ(x1, x2, x3) = 0

defines the surface of a sphere radius a.

More generally

φ(x1, x2, · · · , xn) = c (6)

defines a hypersurface for every fixed value of c. As c varies then (6) gives a
1-parameter family of surfaces.
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φ = c1

φ = c2

§3 Vectors and co-vectors

Vectors

We start by considering an example. Let a particle have position xa(t) at
time t (as measured in the x coordinate system). Then the velocity of the
particle V a is given by

V a =
dxa

dt
(7)

xa(t)

V a

The velocity is an example of a vector.
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What does the velocity look like in a different coordinate system?

Let x′a = x′a(x1, x2, · · · , xn)

Then x′a(t) = x′a(x1(t), x2(t), · · · , xn(t))

gives the position of the particle in the new coordinates.

So that

V ′a =
dx′a

dt
(8)

is the velocity of the particle in the new coordinates.

Now by the chain rule

V ′1 =
dx′1

dt

=
∂x′1

∂x1

dx1

dt
+

∂x′1

∂x2

dx2

dt
+ · · ·+ ∂x′1

∂xn

dxn

dt

=
n∑

b=1

∂x′1

∂xb

dxb

dt

=
n∑

b=1

∂x′1

∂xb
V b

And in general

V ′a =
n∑

b=1

∂x′a

∂xb
V b (9)

We now introduce the Einstein summation convention: any index which ap-
pears twice is summed. (we call such an index a dummy index). Then using
the summation convention (9) can be written as

V ′a =
∂x′a

∂xb
V b (5.16)

Note: the index b appears twice so is summed over.

In general a (contravariant) vector is an object whose components transform
according to (5.16)
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Co-vectors

Another way of constructing vectors in 3-dimensions is using the gradient of
a function.

Example

Let φ be a function of the cartesian coordinates x, y and z then ∇φ is the
vector with components (∂φ/∂x, ∂φ/∂y, ∂φ/∂z). Geometrically ∇φ is normal
to the surface φ = const.

φ = const.

N

In n-dimensions we define the gradient of a function φ(x1, x2, · · · , xn) (in the
x coordinate system) to be

∇φ =
(

∂φ

∂x1
,

∂φ

∂x2
, · · · , ∂φ

∂xn

)

= (φ,1, φ,2, · · · , φ,n)

We now define the co-vector N = ∇φ to have components

Na = φ,a (10)

What does this look like in the x′ coordinate system? By definition

N ′
a =

∂φ

∂x′a
(11)
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To relate this to Na we again use the chain rule:

N ′
1 =

∂φ

∂x′1

=
∂φ

∂x1

∂x1

∂x′1
+

∂φ

∂x2

∂x2

∂x′1
+ · · ·+ ∂φ

∂xn

∂xn

∂x′1

=
n∑

b=1

∂φ

∂xb

∂xb

∂x′1

=
∂φ

∂xb

∂xb

∂x′1
(using the Einstein summation convention)

=
∂xb

∂x′1
Nb

And in general

N ′
a =

∂xb

∂x′a
Nb (5.21)

In general a co-vector (or covariant vector) is an object whose components
transform according to (5.21)

Contraction of a vector and a co-vector

Let V a be a vector and Na a co-vector, then we can define a new quantity
V aNa called the contraction of V with N . Remembering that we are using
the summation convention we see that if we write this out in full we get

V aNa = V 1N1 + V 2N2 + · · ·+ V nNn

so that the contraction is a bit like the dot product.

What does the contraction look like in the x′ coordinate system?

V ′aN ′
a =

(
∂x′a

∂xb
V b

)(
∂xc

∂x′a
Nc

)

=
∂x′a

∂xb

∂xc

∂x′a
V bNc

= δc
bV

bNc (using equation (3))
= V cNc

= V aNa (changing dummy index from c to a)
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(Note: in the first line we must use different dummy indices for each term. If
four dummy indicies had appeared it would have not been clear which terms
to sum first. This gives the important rule: no index should appear more
than twice.)

We have therefore obtained the important result

V aNa = V ′aN ′
a (12)

So that the contraction of the vector V with the co-vector N does not de-
pend upon the coordinate system. This was important to Einstein because it
showed that one could use these ideas to write down the laws of physics using
tensors and produce experimental predictions that were independent of the
coordinates.

§4 General Tensors

In the same way we defined vectors and co-vectors according to the trans-
formation properties of their components we may define general tensors ac-
cording to the way their components transform. The components of a rank 2
tensor define an n× n matrix at each point

We define a rank 2 contravariant tensor as an object which transforms ac-
cording to

X ′ab =
∂x′a

∂xc

∂x′b

∂xd
Xcd

We define a rank 2 mixed tensor as an object which transforms according to

Y ′a
b =

∂x′a

∂xc

∂xd

∂x′b
Y c

d

Finally we define a rank 2 covariant tensor as one whose components transform
according to

Z ′
ab =

∂xc

∂x′a
∂xd

∂x′b
Zcd

We say Zab is symmetric if
Zab = Zba (13)

On the other hand we say Zab is antisymmetric if

Zab = −Zba (14)
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A type (p, q) tensor is one with p contravariant and q covariant indices. (Re-
member:‘co is below’)

T
a1...ap

b1...bq

Under a change of coordinates the components of T transform according to

T
′a1...ap

b1...bq
=

∂x′a1

∂xc1
· · · ∂x′ap

∂xcp

∂xd1

∂x′b1
· · · ∂xdq

∂x′bq
T

c1...cp

d1...dq
(10)

The metric

In differential geometry a special role is played by a rank two tensor gab called
the metric. The metric is a symmetric tensor (so that gab = gba) which has a
well defined inverse at each point (so that det g 6= 0).

The metric is used to measure the ‘length’ of a vector V . We define the length
or modulus of a vector |V | by

|V |2 = gabV
aV b

Because all the quantities transform as tensors and there are no free indices in
this expression it turns out that this is independent of the coordinate system.

Example

If we work in 3-dimensional space and use Cartesian coordinates (x1, x2, x3) =
(x, y, z) then the usual Euclidean metric is given by

gab = δab (in Cartesian coordinates)

So that in Euclidean space and Cartesian coordinates

|V |2 = gabV
aV b

= δabV
aV b

= (V 1)2 + (V 2)2 + (V 3)2

which agrees with the usual expression for the norm of a vector.

We may also use the metric to generalise the notion of dot product between
two vectors V and W by defining the quantity gabV

aW b. (Note this is the
same as gabW

aV b since gab is symmetric).
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If we return to the example of Euclidean space in Cartesian coordinates we
find

gabV
aW b = δabV

aW b

= (V 1)(W 1) + (V 2)(W 2) + (V 3)(W 3)
= V.W

So that in Euclidean space and Cartesian coordinates we get precisely the
usual dot product between vectors.

The contravariant metric

Because gab is invertible we may define its inverse. We denote the inverse of
gab by gab. Taking the inverse of the equation

g′ab =
∂xc

∂x′a
∂xd

∂x′b
gcd (16)

We get

g′ab =
∂x′a

∂xc

∂x′b

∂xd
gcd (17)

so that gab is a (symmetric and invertible) contravariant tensor.

Note that because gab is the inverse of gab we have the two important equa-
tions:

gacgcb = δa
b (18)

and
gacg

cb = δa
b (19)

Raising and lowering indices

Let Xa be a contravariant vector then we may define a new object gabX
b by

contracting Xa with the metric gab. Since both Xa and gab are tensors the
new object is also a tensor. Since it has one downstairs index it must represent
a covariant vector. Since it obtained from the (contravariant) vector X we
call it the covariant form of X and write

Xa = gabX
b (20)

We call this operation lowering the index.
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In the same way if we are given a covariant vector Ya we may define its
contravariant form by contracting with gab so that

Y a = gabYb (21)

We call this operation raising the index.

However suppose we start with a vector Xa, then lower the index to obtain
Xa we need to be sure that when we raise it again we get back to the same
Xa that we started with. We now show that this is true:

Xb = gbcX
c

So that
gabXb = gabgbcX

c

= δa
c Xx

= Xa

It is possible to raise and lower any tensor index using the metric. For example
if we start with the type (0, 2) tensor Tab we may define the type (1, 1) tensor

T a
b = gacTcb

by raising the first index, and a (in general) different type (1, 1) tensor

T b
a = Tacg

cb

by raising the second index. We can also define a type (2, 0) tensor by raising
both indices

T ab = gacgbdTcd

The line element

An alternative notation is also sometimes used to represent a metric. Given
the metric gab we (formally) define the line element ds2 according to

ds2 = gabdxadxb (22)

When we write this equation we view it as ds measuring the infinitesimal
distance between points with coordinates xa and xa + dxa.
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The length of a curve

The above interpretation of the line element enables us to define the length
of a curve.

Let xa(t) for p < t < q define some curve γ. Then we may define the length
of the curve by

`(γ) =
∫

γ

ds (23)

where the integral is performed along the curve γ. In order to compute this
integral we divide equation (22) by dt2 and take the square root to obtain

ds

dt
=

√
gab

dxa

dt

dxb

dt
(24)

Using this we see that the length of the curve γ is given by

`(γ) =
∫ q

t=p

√
gab

dxa

dt

dxb

dt
dt (25)

This equation will prove important when we come to calculate the equation
of a geodesic – a curve which minimizes the distance between two points –
and generalizes the concept of straight line to a curved space(time).
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