PHY472
The
University
Of
Sheffield.

DEPARTMENT OF PHYSICS & ASTRONOMY

Autumn Semester 2006-2007
ADVANCED QUANTUM MECHANICS 2 Hours

Answer THREE questions.
A formula sheet and table of physical constants is attached to this paper.
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Find the eigenvalues and eigenfunctions of the following matrix,
assuming that @ and £ are real variables: [3]

£

Construct the matrix S so that its rows will be the eigenfunctions

of the matrix 4 and prove that SS” =1.
2]

Show by explicit calculations that
; € 0
A'=SAS" = ,
0 -¢
where * ¢ are the eigenvalues. [3]

Provide a “physical’’ argument why you would have expected a
diagonal form like the above for this matrix. (2]

For a one-dimensional harmonic oscillator with the Hamiltonian
2
1 ) ) .
H= ;; +—ma’x”, find the matrix representation fora,a’, x,
m

and p in the basis of the eigenstates |n> defined via
a7|n>=\/n+l|n+1>and a|n>=\/;|n—l>. [4]
1

N 2moh

Reminder: a = (max+ip).

Confirm that the matrix representation for a' is the adjoint of .
Are the matrix representations of x and p Hermitian, and if so,

why? [1]

By using the representation of the annihilation operator a in
x —space, and the definition of the ground-state a y,(x) =0, find

the normalised ground-state wave functiony/(x) . [3]

Find the normalised first excited state w,(x) by operating a' (in
differential form) on y (x). [2]

CONTINUED
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3 Suppose that the density operator for a quantum system is defined as

PO =D W, ()P, (v, (1)

where P, is the probability of the system being in the state |wa (t)>.

3

(a) Show that:

Q) Tr(p) =1, [2]
(i) <K> = Tr(pK), [2]
(iii) the equation of motion satisfies ih% =[H, p(1)]. 4]

(b) If the system is in equilibrium and part of a canonical ensemble,
what is P, and what is operator form for the density? [2]

4 Consider a spin-1/2 system with a spin§ and a magnetic moment
ji=yS interacting with a time-dependent magnetic field

B(t) = B, (i cos ot + jsinwr) + Bol€ . The spin is defined as S = %& in
) ) 0 1 0 —i 1 0

terms of the Pauli matrices o, = ,0, = ,0, = ,
AR S O i 0 0 -1

defined in the up/down basis {‘T>, J«>}, and the Hamiltonian of the

system is defined as H = —u.B .

(a) Construct the Hamiltonian in the basis {‘T>, i>}, and decompose it

into the diagonal part / and the non-diagonal part ¥ as
H=H,+W(t). (4]

(b) Defining a general state as|l//(t)> = al(t)‘T> +a, (t)‘¢>, write down

the Schrodinger equation for this system and extract from it two
equations fora,(¢)anda,(¢) . Assuming the frequency is set to the

resonance @ = yB,, solve these equations with the initial condition
that the spinisup at 1=0. [4]

(c) What is the probability that the spin is up at a given timez ? (2]
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5 The quantum mechanical propagator, G , relates the wave function at
any given position and time to the wave function in a prior time and
other points in space via

(it = j &7 GGty ot W (Faty).

(a) Using the Schrodinger equation ih§|l//(l‘)> =H |1//(t)> , find the

evolution operator U (¢,,t,) that takes the system from time¢, to ¢,

via |y (1)) =U(0,.0)|w (1))
Hint: make sure that causality is guaranteed in the result.

(b) Show that G(7,4,;7,1,) = ([U(t,.1,)|7), and use the explicit form

for the evolution operator found above to write an expression for
the propagator in terms of the Hamiltonian.

(¢) Show that the Fourier transform
G E) = [ dtG (17, 0) expliEt /1]
is given by

L hew. G,
6= T,

where y, are the eigenfunctions of the Hamiltonian with

eigenvalues £

n’

and ¢ is an infinitesimal positive number.

(d) Using the above expression for the propagator, show that it

satisfies %(E—ﬁ)G(FZ,Fl;E) =5 (7, - 7).

END OF QUESTION PAPER
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