

DEPARTMENT OF PHYSICS \& ASTRONOMY

Autumn Semester 2006-2007

ADVANCED QUANTUM MECHANICS
 2 Hours

Answer THREE questions.
A formula sheet and table of physical constants is attached to this paper.
All questions are marked out of ten. The breakdown on the right-hand side of the paper is meant as a guide to the marks that can be obtained from each part.
(a) Find the eigenvalues and eigenfunctions of the following matrix, assuming that α and β are real variables:

$$
A=\left[\begin{array}{cc}
\alpha & \beta \\
\beta & -\alpha
\end{array}\right]
$$

(b) Construct the matrix S so that its rows will be the eigenfunctions of the matrix A and prove that $S S^{T}=1$.
(c) Show by explicit calculations that

$$
A^{\prime}=S A S^{T}=\left[\begin{array}{cc}
\varepsilon & 0 \\
0 & -\varepsilon
\end{array}\right],
$$

where $\pm \varepsilon$ are the eigenvalues.
(d) Provide a "physical"' argument why you would have expected a diagonal form like the above for this matrix.

2 (a) For a one-dimensional harmonic oscillator with the Hamiltonian $H=\frac{p^{2}}{2 m}+\frac{1}{2} m \omega^{2} x^{2}$, find the matrix representation for a, a^{\dagger}, x, and p in the basis of the eigenstates $|n\rangle$ defined via

$$
\begin{equation*}
a^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle \text { and } a|n\rangle=\sqrt{n}|n-1\rangle . \tag{4}
\end{equation*}
$$

Reminder: $a=\frac{1}{\sqrt{2 m \omega \hbar}}(m \omega x+i p)$.
(b) Confirm that the matrix representation for a^{\dagger} is the adjoint of a. Are the matrix representations of x and p Hermitian, and if so, why?
(c) By using the representation of the annihilation operator a in x-space, and the definition of the ground-state $a \psi_{0}(x)=0$, find the normalised ground-state wave function $\psi_{0}(x)$.
(d) Find the normalised first excited state $\psi_{1}(x)$ by operating a^{\dagger} (in differential form) on $\psi_{0}(x)$.

3 Suppose that the density operator for a quantum system is defined as

$$
\hat{\rho}(t)=\sum_{\alpha}\left|\psi_{\alpha}(t)\right\rangle P_{\alpha}\left\langle\psi_{\alpha}(t)\right|,
$$

where P_{α} is the probability of the system being in the state $\left|\psi_{\alpha}(t)\right\rangle$.
(a) Show that:
(i) $\operatorname{Tr}(\hat{\rho})=1$,
(ii) $\langle\hat{K}\rangle=\operatorname{Tr}(\hat{\rho} \hat{K})$,
(iii) the equation of motion satisfies $i \hbar \frac{\partial \hat{\rho}(t)}{\partial t}=[\hat{H}, \hat{\rho}(t)]$.
(b) If the system is in equilibrium and part of a canonical ensemble, what is P_{α} and what is operator form for the density?

4 Consider a spin-1/2 system with a spin \vec{S} and a magnetic moment $\vec{\mu}=\gamma \vec{S}$ interacting with a time-dependent magnetic field $\vec{B}(t)=B_{1}(\hat{i} \cos \omega t+\hat{j} \sin \omega t)+B_{0} \hat{k}$. The spin is defined as $\vec{S}=\frac{\hbar}{2} \vec{\sigma}$ in terms of the Pauli matrices $\sigma_{x}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right], \sigma_{y}=\left[\begin{array}{cc}0 & -i \\ i & 0\end{array}\right], \sigma_{z}=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$, defined in the up/down basis $\{|\uparrow\rangle,|\downarrow\rangle\}$, and the Hamiltonian of the system is defined as $H=-\vec{\mu} \cdot \vec{B}$.
(a) Construct the Hamiltonian in the basis $\{|\uparrow\rangle,|\downarrow\rangle$, and decompose it into the diagonal part H_{0} and the non-diagonal part W as $H=H_{0}+W(t)$.
(b) Defining a general state as $|\psi(t)\rangle=a_{1}(t)|\uparrow\rangle+a_{2}(t)|\downarrow\rangle$, write down the Schrödinger equation for this system and extract from it two equations for $a_{1}(t)$ and $a_{2}(t)$. Assuming the frequency is set to the resonance $\omega=\gamma B_{0}$, solve these equations with the initial condition that the spin is up at $t=0$.
(c) What is the probability that the spin is up at a given time t ?

5 The quantum mechanical propagator, G, relates the wave function at any given position and time to the wave function in a prior time and other points in space via

$$
\psi\left(\vec{r}_{2}, t_{2}\right)=\int \mathrm{d}^{3} \vec{r}_{1} G\left(\vec{r}_{2}, t_{2} ; \vec{r}_{1}, t_{1}\right) \psi\left(\vec{r}_{1}, t_{1}\right) .
$$

(a) Using the Schrödinger equation $i \hbar \frac{\partial}{\partial t}|\psi(t)\rangle=\hat{H}|\psi(t)\rangle$, find the evolution operator $\hat{U}\left(t_{2}, t_{1}\right)$ that takes the system from time t_{1} to t_{2} via $\left|\psi\left(t_{2}\right)\right\rangle=\hat{U}\left(t_{2}, t_{1}\right)\left|\psi\left(t_{1}\right)\right\rangle$.
Hint: make sure that causality is guaranteed in the result.
(b) Show that $G\left(\vec{r}_{2}, t_{2} ; \vec{r}_{1}, t_{1}\right)=\left\langle\vec{r}_{2}\right| \hat{U}\left(t_{2}, t_{1}\right)\left|\vec{r}_{1}\right\rangle$, and use the explicit form for the evolution operator found above to write an expression for the propagator in terms of the Hamiltonian.
(c) Show that the Fourier transform

$$
G\left(\vec{r}_{2}, \vec{r}_{1} ; E\right)=\int \mathrm{d} t G\left(\vec{r}_{2}, t ; \vec{r}_{1}, 0\right) \exp [i E t / \hbar]
$$

is given by

$$
G\left(\vec{r}_{2}, \vec{r}_{1} ; E\right)=\frac{\hbar}{i} \sum_{n} \frac{\psi_{n}^{*}\left(\vec{r}_{1}\right) \psi_{n}\left(\vec{r}_{2}\right)}{E-E_{n}+i \delta},
$$

where ψ_{n} are the eigenfunctions of the Hamiltonian with eigenvalues E_{n}, and δ is an infinitesimal positive number.
(d) Using the above expression for the propagator, show that it satisfies $\frac{i}{\hbar}(E-\hat{H}) G\left(\vec{r}_{2}, \vec{r}_{1} ; E\right)=\delta^{3}\left(\vec{r}_{2}-\vec{r}_{1}\right)$.

END OF QUESTION PAPER

