PHY472

DEPARTMENT OF PHYSICS & ASTRONOMY

Autumn Semester 2006-2007

ADVANCED QUANTUM MECHANICS

2 Hours

Answer THREE questions.

A formula sheet and table of physical constants is attached to this paper.

All questions are marked out of ten. The breakdown on the right-hand side of the paper is meant as a guide to the marks that can be obtained from each part.

[3]

[2]

- (a) Find the eigenvalues and eigenfunctions of the following matrix, assuming that α and β are real variables:
 - $A = \begin{bmatrix} \alpha & \beta \\ \beta & -\alpha \end{bmatrix}.$
 - (b) Construct the matrix S so that its rows will be the eigenfunctions of the matrix A and prove that $SS^T = 1$.
 - (c) Show by explicit calculations that

$$A' = SAS^{T} = \begin{bmatrix} \varepsilon & 0 \\ 0 & -\varepsilon \end{bmatrix}$$

where $\pm \varepsilon$ are the eigenvalues.

- (d) Provide a "physical" argument why you would have expected a diagonal form like the above for this matrix. [2]
- 2 (a) For a one-dimensional harmonic oscillator with the Hamiltonian $H = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 x^2$, find the matrix representation for a, a^{\dagger}, x , and p in the basis of the eigenstates $|n\rangle$ defined via $a^{\dagger}|n\rangle = \sqrt{n+1}|n+1\rangle$ and $a|n\rangle = \sqrt{n}|n-1\rangle$. [4] Reminder: $a = \frac{1}{\sqrt{2mo\hbar}}(m\omega x + ip)$.
 - (b) Confirm that the matrix representation for a^{\dagger} is the adjoint of a. Are the matrix representations of x and p Hermitian, and if so, [1] why?
 - (c) By using the representation of the annihilation operator a in x – space, and the definition of the ground-state $a \psi_0(x) = 0$, find [3] the normalised ground-state wave function $\psi_0(x)$.
 - (d) Find the normalised first excited state $\psi_1(x)$ by operating a^{\dagger} (in [2] differential form) on $\psi_0(x)$.

2

1

[3]

3 Suppose that the density operator for a quantum system is defined as $\hat{\rho}(t) = \sum_{\alpha} |\psi_{\alpha}(t)\rangle P_{\alpha} \langle \psi_{\alpha}(t) |,$

where P_{α} is the probability of the system being in the state $|\psi_{\alpha}(t)\rangle$.

- (a) Show that:
 - (i) $Tr(\hat{\rho}) = 1,$ [2]

(ii)
$$\left\langle \hat{K} \right\rangle = Tr(\hat{\rho}\hat{K}),$$
 [2]

- (iii) the equation of motion satisfies $i\hbar \frac{\partial \hat{\rho}(t)}{\partial t} = [\hat{H}, \hat{\rho}(t)].$ [4]
- (b) If the system is in equilibrium and part of a canonical ensemble, what is P_{α} and what is operator form for the density? [2]

Consider a spin-1/2 system with a spin \vec{S} and a magnetic moment $\vec{\mu} = \gamma \vec{S}$ interacting with a time-dependent magnetic field $\vec{B}(t) = B_1(\hat{i} \cos \omega t + \hat{j} \sin \omega t) + B_0 \hat{k}$. The spin is defined as $\vec{S} = \frac{\hbar}{2} \vec{\sigma}$ in terms of the Pauli matrices $\sigma_x = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \sigma_y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, \sigma_z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix},$ defined in the up/down basis $\{|\uparrow\rangle, |\downarrow\rangle\}$, and the Hamiltonian of the system is defined as $H = -\vec{\mu}.\vec{B}$.

- (a) Construct the Hamiltonian in the basis $\{|\uparrow\rangle, |\downarrow\rangle\}$, and decompose it into the diagonal part H_0 and the non-diagonal part W as $H = H_0 + W(t)$.
- (b) Defining a general state as $|\psi(t)\rangle = a_1(t)|\uparrow\rangle + a_2(t)|\downarrow\rangle$, write down the Schrödinger equation for this system and extract from it two equations for $a_1(t)$ and $a_2(t)$. Assuming the frequency is set to the resonance $\omega = \gamma B_0$, solve these equations with the initial condition that the spin is up at t = 0. [4]
- (c) What is the probability that the spin is up at a given time t? [2]

4

TURN OVER

[4]

The quantum mechanical propagator, G, relates the wave function at any given position and time to the wave function in a prior time and other points in space via

$$\psi(\vec{r}_2, t_2) = \int d^3 \vec{r}_1 \ G(\vec{r}_2, t_2; \vec{r}_1, t_1) \psi(\vec{r}_1, t_1)$$

- (a) Using the Schrödinger equation $i\hbar \frac{\partial}{\partial t} |\psi(t)\rangle = \hat{H} |\psi(t)\rangle$, find the evolution operator $\hat{U}(t_2, t_1)$ that takes the system from time t_1 to t_2 via $|\psi(t_2)\rangle = \hat{U}(t_2, t_1) |\psi(t_1)\rangle$. [2] *Hint:* make sure that causality is guaranteed in the result.
- (b) Show that $G(\vec{r}_2, t_2; \vec{r}_1, t_1) = \langle \vec{r}_2 | \hat{U}(t_2, t_1) | \vec{r}_1 \rangle$, and use the explicit form for the evolution operator found above to write an expression for the propagator in terms of the Hamiltonian. [3]
- (c) Show that the Fourier transform

$$G(\vec{r}_{2},\vec{r}_{1};E) = \int dt G(\vec{r}_{2},t;\vec{r}_{1},0) \exp[iEt/\hbar]$$

is given by

5

$$G(\vec{r}_2, \vec{r}_1; E) = \frac{\hbar}{i} \sum_n \frac{\psi_n^*(\vec{r}_1)\psi_n(\vec{r}_2)}{E - E_n + i\delta},$$

where ψ_n are the eigenfunctions of the Hamiltonian with [3] eigenvalues E_n , and δ is an infinitesimal positive number.

(d) Using the above expression for the propagator, show that it satisfies $\frac{i}{\hbar}(E - \hat{H})G(\vec{r_2}, \vec{r_1}; E) = \delta^3(\vec{r_2} - \vec{r_1})$. [2]

END OF QUESTION PAPER

PHY472