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Answer THREE questions. 
 
A formula sheet and table of physical constants is attached to this paper. 
 
All questions are marked out of ten.  The breakdown on the right-hand side of the 
paper is meant as a guide to the marks that can be obtained from each part. 
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1 Consider a solid made up of N classical magnetic dipoles with moment 

µr  in an external magnetic field B
r

. The energy of a dipole in the 
external magnetic field is given as: 

θµµ cos BBE −=⋅−=
rr , 

where θ  is the angle between the direction of the dipole and the 
magnetic field. 
 

 
  

 (a) Assuming that the dipoles do not interact with each other, show 
that the partition function and the thermodynamic properties of the 
system can be obtained using the single-particle partition function. 

 

 
 

[2] 

 (b) The partition function for one dipole is given by  
EedZ β

π
−∫

Ω
=  

4
, 

where TkB/1=β , and the integration is performed over the solid 
angleΩ  that defines the direction of the dipole in 3D space. Using 

2 2 1

0 0 0 1

1 1sin  
4 4 4
d d d d dx

π π π

φ θ θ φ
π π π

−

Ω
= =∫ ∫ ∫ ∫ ∫ , 

where θ  and φ  are the angles in the spherical coordinates 
(assuming that B

r
 is in the z-direction) and θcos=x , show that 

the partition function is given by 

B
BZ

βµ
βµ )sinh(

= . 

 
 
 
 
 
  
  
  
 
 
 
 

[3] 
 

  
(c) Show that the average energy is given by 









−−=

B
BBU

βµ
βµµ 1)coth( . 

Examine the limiting behaviours of this expression at high and 
low temperatures. Sketch the energy as a function of temperature. 

Hint: use x
x

x
3
11coth ≈−  for 1<<x . 

 
 
 
 
 
 
 

 [3] 

 (d)  Calculate the heat capacity TUCV ∂∂= / , and sketch it as a 
function of temperature. 

 
[2] 
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2 A container of volume V is filled with a mixture of two ideal gases of 
type A and B. There are AN  indistinguishable molecules of type A 
with mass Am  and BN  indistinguishable molecules of type B with 
mass Bm , while the two types can be clearly distinguished from one 
another. 

 
 
 

 

 (a)  How do we count the number of states in the phase space for a gas 
of particles? Derive the single-particle partition function for the 
gas particles, using the sum over configuration space. 
 

 
 

[2] 

 (b)  Write an expression for the many-particle partition function of the 
system in terms of the relevant single-particle partition functions. 

 
[2] 

 (c) Using the partition function, calculate the total Helmholtz free 
energy F , the internal energy, the entropy, and the equation of 
state of the system. 

   

 [4] 

 (d)  Which of the thermodynamic quantities calculated above are the 
same as those of a homogenous ideal gas of BA NNN +=  
particles, and which are not? Explain why.    

  
 

 [2] 
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3 (a)  Show that the average internal energy of a system with a constant 
volume and particle number in thermal contact with a heat bath at 
a temperature T is 

β∂
∂

−=
ZU ln , 

where Z is the canonical partition function and TkB/1=β . 

 
 
 
 
 

[2] 
 

 (b)  From quantum mechanics, the rotational energy levels of a 
molecule are 

)1( 
2

2

+= jj
Ij
hε , 

where I  is the moment of inertia and the angular momentum 
quantum number j  takes on integer values ) ,2 ,1 ,0( L=j . The 
degeneracy of the jth level is 12 += jg j . 

 
 
 
 
 

 (i) Write down an expression for the partition function for the 
rotational motion. 

 
[2] 

 (ii) For rTT << , where )2/( B
2 IkTr h= , the sum may be truncated 

after 1=j . Show that in this limit the contribution of the 
rotational motion to the heat capacity reads  

TTr
r

re
T
TkC /2

2

B
23 −






= . 

Hint: use xx ≈+ )1(ln  for 1<<x . 

 
 
 
 
 
 

[3] 
 (iii) Explain why the sum over j  in the partition function may be 

converted into an integral in the high temperature limit, over a 

new variable )2/(
2
1

B
2

2

TIkjy h





 += . Hence, show that in this 

limit the heat capacity satisfies the equipartition theorem.  

Hint: use )/(
2
1)2/(

2
1 2 B

2
B

2 TIkjTIkjjy hh 





 +=






 +∆=∆  

as 1=∆j . 

 
 
 

[3] 
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4 An ideal gas of N molecules of mass m is contained in a cylinder of 

length L and radius R. The cylindrical container is rotating about its 
axis at an angular velocityω , and is at equilibrium with temperature T. 

 
 

 (a) What is the effect of rotation on the density profile of the gas? Make 
a sketch of this profile and explain why you expect this behaviour. 

 
[1] 

 (b)  Write down the expression for the energy of single-particle states 
and the Boltzmann distribution for the gas in the rotating frame of 
the cylinder, assuming that the particles experience an additional 
centrifugal potential energy of the form 

22

2
1)( rmrV ω−=  

where r is the distance from the axis in the cylindrical coordinate 
system. Separate the translational and interaction parts of the 
partition function and the Boltzmann distribution, and show that the 
expression for (the interaction part of) the Boltzmann distribution is 
consistent with your physical description of the density profile in 
part (a). 

 
 
 
 
 
 
 
 
 
 
 
 

[3] 
 (c)  Calculate the partition function and the Helmholtz free energy of 

the gas in the rotating frame of the cylinder.  
 

[4] 
 (d)  Calculate the limiting form of the free energy for TkRm B

22 <<ω . 
Hint: use 2/1 2xxe x ++≈  and xx ≈+ )1(ln  for 1<<x . 

 
[1] 

  
(e)  Using the above result, calculate the pressure that is exerted on the 

container walls, by considering an infinitesimal increase in the 
radius of the container. Check that you can reproduce the ideal gas 
pressure. 

 
 
 
 

[1] 
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5 Consider a gas of N fermions that are restricted to move only in a one-

dimensional space of size L, in the thermodynamic limit. 
 

 (a) Describe why it is permissible to use a grand canonical ensemble 
for this system with fixed number of particles. Write down the 
Fermi-Dirac distribution for the average occupation number of 
fermions with energy ε  and chemical potential )(Tµ . 

 
 
 

[2] 

 (b)  Write down the dispersion relation of the particles. What is the 
difference between this result and the dispersion relation of the 3D 
Fermi gas? 

 
 

[1] 

 (c) By counting the number of states in the wave-vector space, 
calculate the Fermi wave-vector Fk  and the Fermi energy Fε . 

 
[2] 

 (d)  Using the density of states in the wave-vector space, calculate the 
density of states )(εg . 

  
  [2] 

 (e)  Write down the equation that determines the chemical potential, 
and (by explicit calculations) show that it is consistent 
with F)0( εµ ==T . 

 
  

[1] 

 (f)  Calculate the average kinetic energy and the one-dimensional 
pressure (the equivalent of 3D pressure adapted to this case) 
at 0=T . 

 
[2] 

 
 
 
 

END OF QUESTION PAPER 
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