

DEPARTMENT OF PHYSICS & ASTRONOMY

Autumn Semester 2006-2007

MAGNETISM AND SUPERCONDUCTIVITY

2 Hours

Answer THREE questions.

A formula sheet and table of physical constants is attached to this paper.

All questions are marked out of ten. The breakdown on the right-hand side of the paper is meant as a guide to the marks that can be obtained from each part.

PHY331

TURN OVER

[2]

[1]

- (a) Explain how a diamagnetic material responds to an externally applied magnetic field *H*. Define the magnetisation *M*, the susceptibility χ and the relative permeability μ_r of a diamagnet and comment on their magnitudes.
 - (b) What is the significance of the fact that all materials have a contribution to their susceptibility which is diamagnetic?
 - (c) Describe the main features of the model that Langevin developed for the diamagnetic state. Hence show that the volume susceptibility χ of a diamagnetic material may be written

$$\chi = -\mu_0 N Z \frac{e^2}{6m} \left\langle \rho^2 \right\rangle,$$

where N is the number of atoms per unit volume, Z is the atomic number, $\langle \rho^2 \rangle$ is the mean square radius of the electron orbits, μ_0 is the permeability of free space and e and m are the charge and mass of the electron respectively. [5]

(d) The mean square radius of the ground state electron orbit of hydrogen is $\langle \rho^2 \rangle = 3a_0^2$, where $a_0 = 4\pi\varepsilon_0\hbar^2/me^2$.

Use this information to calculate the molar diamagnetic susceptibility of a sample of atomic hydrogen gas.

[2]

1

2	(a)	Describe the fundamental features of the so-called "Molecular Field Model" which was proposed by P Weiss to explain the magnetic properties in the ferromagnetic state.	[2]
	(b)	Hence explain, with an appropriate level of mathematical detail and the aid of sketch graphs where appropriate, how the spontaneous magnetisation of a ferromagnet may be calculated using the Molecular Field Model.	
		Your answer should make clear	
		(i) the significance of the Curie temperature T_C ,	
		(ii) the role of the Brillouin Function $B_{J}(y)$ in your derivation.	
		It should include a graph of the reduced magnetisation $M(T)/M(0)$ versus the reduced temperature T/T_C .	[5]
	(c)	In what circumstances does the Molecular Field Model fail to give a good description of the properties of a ferromagnet and why does this happen?	[2]
	(d)	The Curie temperature of iron is $T_C = 1093$ K and each iron atom carries a magnetic moment of 2.22 μ_B . Show that the magnitude of the Weiss Molecular Field must be of the order of 800 T.	[1]

(a) Give an account, starting from the Sommerfeld free electron model of solids, of Stoner's itinerant electron theory of ferromagnetism.

Include sketch graphs in your answer, to show how a simple parabolic density of states curve is modified by the action of a magnetic field on the electrons.

Hence give a qualitative account of how Stoner's criterion for ferromagnetism

$$\gamma \,\mu_B^2 \,D\big(E_F\big) \geq 1$$

can be obtained.

3

	Here γ is a molecular field constant and $D(E_F)$ is the density of (electronic) states at the Fermi surface.	[6]
(b)	What, briefly, is the form of the actual 3d and 4s electron bands in transition metals, and how does this help explain the absence of ferromagnetism in copper and its presence in nickel?	[2]
(c)	The notional molecular field in ferromagnetic iron is \approx 700 T and the Fermi Energy approximately \approx 7 eV.	
	Discuss whether these values suggest that the magnetic interactions represent a small perturbation at the Fermi Surface.	[2]

PHY331

CONTINUED

4	In 1 Met arou	933, twenty-two years after the discovery of superconductivity, issner and Ochsenfeld studied the spatial variation of magnetic field und a superconductor.	
	(a)	What was the nature of their observations? Describe with the aid of sketches the phenomenon known as the Meissner Effect.	[3]
	(b)	Show that the laws of electromagnetism demonstrate that the Meissner Effect corresponds to a perfect diamagnetic state.	[2]
	(c)	Explain what is meant by the critical field H_c of a superconductor and hence describe the division of superconductors into Type I and Type II examples.	
		Describe, with the aid of sketch graphs, the distinction between the magnetic properties of Type I and Type II superconductors.	[3]
	(d)	The critical field of metallic tantalum (Ta) is $H_c(0) = 6.37 \times 10^4 \text{ A m}^{-1}$ at $T = 0 \text{ K}$. Show by means of a sketch graph how the value of H_c will vary with temperature.	
		The superconducting transition temperature of tantalum is $T_c = 4.48$ K. What is the value of H_c at 2.24 K?	[2]

[2]

5 The London Equation (below) arises from a description of the Meissner Effect in terms of superconducting surface currents, which screen the interior of a superconducting sample,

$$\nabla \times \mathbf{j} = -\frac{n_s e^2}{m} \mathbf{B} \, .$$

Here n_s is the number density of superconducting electrons, e and m are the charge and mass of the electron respectively and **B** is the magnetic induction field.

(a) Show how the London equation can be used with Ampère's theorem,

$$\nabla \times \mathbf{H} = \mathbf{j} + \frac{\partial \mathbf{D}}{\partial t}$$

to demonstrate that an external magnetic field will decay exponentially with distance into the surface of a superconductor. [5]

You may use the identity $\nabla \times (\nabla \times \mathbf{A}) = \nabla (\nabla \cdot \mathbf{A}) - \nabla^2 \mathbf{A}$ where $\nabla \times \mathbf{j} = curl \mathbf{j}$ and $\nabla \cdot \mathbf{A} = div \mathbf{A}$.

(b) Hence show that the London penetration depth λ_L is given by the expression

$$\lambda_L = \frac{1}{e} \sqrt{\frac{m}{n_s \,\mu_0}} \; \; ,$$

where μ_0 is the permeability of free space.

Calculate the value of London penetration depth λ_L in a metal where the number density of superconducting electrons is $n_s = 1 \times 10^{29} \text{ m}^{-3}$.

(c) How do you expect the London penetration depth λ_L to vary with temperature *T*, and how can this variation be simply explained?[3]

END OF EXAMINATION PAPER

PHY331