MATHEMATICAL PHYSICS

Attempt questions 1 and 4, and one other question from EACH of sections A and B (making a total of four questions).

SECTION A

1. Compulsory

(a) Given the matrices

$$
A=\left(\begin{array}{cc}
-2 & 2 \\
2 & 1
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{ccc}
4 & 2 & 0 \\
2 & 3 & -1 \\
0 & -1 & 5
\end{array}\right)
$$

evaluate the determinant and the trace of each matrix.
(b) Find the eigenvalues and normalised eigenvectors of the matrix A above.
(c) The moment of inertia tensor for a set of particles, with positions \boldsymbol{r}_{α} and masses m_{α} is

$$
I=\sum_{\alpha} m_{\alpha}\left[\left(\boldsymbol{r}_{\alpha} \cdot \boldsymbol{r}_{\alpha}\right) \mathbb{1}-\left(\boldsymbol{r}_{\alpha} \otimes \boldsymbol{r}_{\alpha}\right)\right] .
$$

A rigid body consists of three equal masses m, which are located at positions $\boldsymbol{r}_{1}=(a,-a, a), \boldsymbol{r}_{2}=(a, 2 a, 0)$ and $\boldsymbol{r}_{3}=(2 a, a,-2 a)$, joined by a light frame. Calculate the moment of inertia tensor I.
(d) Show that the matrices $C C^{\dagger}$ and $C+C^{\dagger}$ are Hermitian, for any matrix C, not necessarily Hermitian.
2. (a) Show that an orthogonal matrix must have:
i. Determinant ± 1.
ii. Eigenvalues with unit modulus, $|\lambda|=1$.
(b) Rotations in two dimensions are given by the orthogonal matrix

$$
\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) .
$$

Determine the eigenvalues and eigenvectors of this matrix.
(c) Rotations in three dimensions are given by 3×3 orthogonal matrices with determinant +1 . The secular equation is thus a cubic with real coefficients. Use this, and the results of (a), to show that the eigenvalues of the matrix must be $1, e^{i \phi}$ and $e^{-i \phi}$, where ϕ is some real constant.
(d) Explain, with reasons, the physical significance of:
i. The eigenvector corresponding to the eigenvalue 1 in part (c).
ii. The constant ϕ.
3. In quantum mechanics, the time dependence of a state is given by a unitary operator $\hat{U}(t)$, defined so that

$$
\psi(x, t)=\hat{U}(t) \psi(x, 0) .
$$

$\psi(x, t)$ represents the state of the system at time t, which satisfies the time dependent Schrödinger equation

$$
i \hbar \frac{\partial}{\partial t} \psi(x, t)=\hat{H} \psi(x, t) .
$$

(a) Show that, if the Hamiltonian \hat{H} is independent of t, \hat{U} can be expressed as

$$
\begin{equation*}
\hat{U}(t)=\exp (-i \hat{H} t / \hbar) \tag{3}
\end{equation*}
$$

(b) Show also that \hat{U} in (a) is unitary, and that this implies that the time evolution maintains the normalisation of the wavefunction.
(c) The Hamiltonian of a particular two-state system is represented by the matrix

$$
H=\frac{\hbar \omega}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) .
$$

Show that $H^{2}=(\hbar \omega)^{2} \mathbb{1}$, and hence, or otherwise, demonstrate that

$$
\hat{U}(t)=\left(\begin{array}{cc}
\cos \omega t-\frac{i}{\sqrt{2}} \sin \omega t & -\frac{i}{\sqrt{2}} \sin \omega t \\
-\frac{i}{\sqrt{2}} \sin \omega t & \cos \omega t+\frac{i}{\sqrt{2}} \sin \omega t
\end{array}\right) .
$$

(d) The system is initially in the state $\binom{0}{1}$. Calculate, as a function of time, the expectation value of the operator represented by the matrix

$$
A=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

(The matrix $\exp (M)$ is defined by the power series

$$
\exp (M)=\mathbb{1}+M+\frac{M^{2}}{2!}+\frac{M^{3}}{3!}+\cdots+\frac{M^{n}}{n!}+\cdots
$$

and if M, N commute, the relationship $\exp (M+N)=\exp (M) \exp (N)$ holds.)

SECTION B

4. Compulsory

(a) State the Cauchy-Riemann conditions and determine which of the following functions is analytic throughout the complex plane:
(i) z^{2}, \quad (ii) $z+z^{*}, \quad$ (iii) $i z, \quad$ (iv) $\log z$.
(b) Evaluate the residues of the following functions at the points indicated:
(i) $\frac{1}{2+3 z}$ at $z=-\frac{2}{3}$
(ii) $\frac{1}{z(1-z)^{2}}$ at $z=1$
(iii) $\frac{1}{\cos z+1}$ at $z=\pi$.
(c) Develop the first three non-zero terms of the Laurent expansions, about the origin, for

$$
f(z)=\frac{1}{z\left(z^{2}-1\right)}
$$

which are valid (i) when $|z|<1$ and (ii) when $|z|>1$.
(d) Consider the conformal transformation

$$
w=u+i v=z+z^{-1},
$$

where $z=x+i y$. Obtain expressions for u and v in terms of x and y. What curves do the circles $x^{2}+y^{2}=a^{2}$ map on to? Sketch these curves for $a=\frac{1}{2}$, 1 , and 2 .
5. (a) Explain, with an example, the meanings of the terms multiple-valued function, branch cut and Riemann surface.
(b) Use the residue theorem to show that

$$
\begin{equation*}
I=\int_{0}^{\infty} d x \frac{x^{a}}{\left(1+x^{2}\right)^{2}}=\frac{\pi}{4}(1-a) \sec (\pi a / 2), \tag{6}
\end{equation*}
$$

where $-1<a<+3$.
(c) What happens to the integral when $a>3$?
[1]
Hint: One method of evaluating the integral is to use the contour shown below:

6. (a) Show that both the real and imaginary parts of an analytic complex function $f(z)=f(x+i y)$ satisfy Laplace's equation in two dimensions,

$$
\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}=0
$$

(b) Consider the function $f(z)=(2 / \pi) \log z$. Calculate the imaginary part of this function, and show that it satisfies the boundary conditions $\phi(x, y)=$ 0 on the line $y=0$, and $\phi(x, y)=1$ on the line $x=0, y>0$.
(c) For the conformal mapping

$$
z=i \frac{1-w}{1+w}, \quad w=u+i v
$$

find x and y as functions of u and v. Show that the line $y=0$ maps onto the unit circle $u^{2}+v^{2}=1$, and the line $x=0, y>0$ maps onto the line $v=0$ between $u=-1$ and $u=+1$.
(d) Use the results of (b) and (c) to obtain the electrostatic potential $\phi(u, v)$ in the space between the half circle $u^{2}+v^{2}=1, v>0$ and the line $v=0$, when $\phi=0$ on the semi-circular boundary and $\phi=1$ on the line segment $-1 \leq u \leq 1$.

