Further Quantum Mechanics

Attempt three of the five questions on the paper.

1. (a) Explain how the variational method is used to find the ground state energy, E_{1}, associated with a given Hamiltonian \hat{H}.
(b) Show that

$$
\frac{\langle\psi| \hat{H}|\psi\rangle}{\langle\psi \mid \psi\rangle} \geq E_{1}
$$

where ψ is any trial wavefunction.
(c) Consider the trial wavefunction $\psi(x)=e^{-\beta|x|}$, where β is a variational parameter. Sketch this wavefunction, and its first and second derivatives, paying particular attention to the region around $x=0$.
(d) Use this wavefunction to estimate the ground state energy of the harmonic oscillator, with

$$
\hat{H}=-\frac{\hbar^{2}}{2 m_{e}} \frac{d^{2}}{d x^{2}}+\frac{1}{2} m_{e} \omega_{c}^{2} x^{2}
$$

2. The Pauli matrices are

$$
\sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \sigma_{y}=\left(\begin{array}{rr}
0 & -i \\
i & 0
\end{array}\right) \quad \sigma_{z}=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right)
$$

(a) Show that $\left[\sigma_{x}, \sigma_{y}\right]=2 i \sigma_{z}$, and that $\sigma_{x}^{2}=\sigma_{y}^{2}=\sigma_{z}^{2}=\mathbb{1}$.
(b) Find the eigenvalues and eigenvectors of each of σ_{z} and σ_{y}.
(c) An electron is placed in a region where there is a uniform magnetic field, magnitude B, in the y direction. What is the Hamiltonian for the spin part of the wavefunction for the electron?
(d) If the electron is initially in the state $\binom{1}{0}$, calculate the state vector as a function of time. What are the possible outcomes of a measurement of σ_{y}, and with what probability will each occur if the measurement is made at time t ?
3. (a) How does the vector potential \boldsymbol{A} in electromagnetism relate to the magnetic field B? Explain what is meant by gauge invariance in the context of electromagnetism.
(b) Give a suitable form for \boldsymbol{A} which corresponds to a uniform magnetic field of magnitude B acting in the z direction.
(c) A hydrogen atom is placed in a uniform magnetic field. Use first order perturbation theory to calculate the energy shift of the ground state due to the quadratic term in the Hamiltonian

$$
\hat{H}^{\prime}=\frac{e^{2} A^{2}}{2 m_{e}},
$$

where e and m_{e} are the charge and mass of the electron.
(The normalised ground state wavefunction of the hydrogen atom is $\phi(\boldsymbol{r})=\left(\pi a_{0}^{3}\right)^{-\frac{1}{2}} \exp \left(-r / a_{0}\right)$, where $a_{0}=0.0529 \mathrm{~nm}$ is the Bohr radius.)
(d) Find a numerical value for the field B at which the energy shift is equal to the Zeeman splitting $g \mu_{B} B$. You may assume that $g=2$.
(e) Sketch what happens to the zero-field lowest energy level of the atom, as a function of magnetic field.
4. For a system of N identical particles, in a state $\psi\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}, \ldots \boldsymbol{r}_{N}\right)$, the probability of finding any one particle in a volume element $d^{3} \boldsymbol{r}$ about the point \boldsymbol{r} is $P_{1}(\boldsymbol{r}) d^{3} \boldsymbol{r}$, where

$$
P_{1}(\boldsymbol{r})=\int d^{3} \boldsymbol{r}_{2} \int d^{3} \boldsymbol{r}_{3} \ldots \int d^{3} \boldsymbol{r}_{N}\left|\psi\left(\boldsymbol{r}, \boldsymbol{r}_{2}, \ldots \boldsymbol{r}_{N}\right)\right|^{2}
$$

(a) Write down a suitable wavefunction for two, non-interacting, indistinguishable fermions in the orthonormal states $\phi_{1}(\boldsymbol{r})$ and $\phi_{2}(\boldsymbol{r})$. Give the equivalent wavefunction for bosons.
(b) In both cases, show that $P_{1}(\boldsymbol{r})=\frac{1}{2}\left[\left|\phi_{1}(\boldsymbol{r})\right|^{2}+\left|\phi_{2}(\boldsymbol{r})\right|^{2}\right]$.

$$
5-1020-20-2
$$

Two indistinguishable, non-interacting, spin- $\frac{1}{2}$ particles move in a one-dimensional infinite well of width a (that is, $V(x)=0$ for $|x| \leq a / 2, V(x)=\infty$ for $|x|>a / 2)$.
(c) What are the energies and wave-functions for the lowest energy configurations with (i) total spin $S=0$, (ii) $S=1$?
(d) A weak interaction between the particles is switched on, with a short range potential of the form $V_{0} \delta\left(x_{1}-x_{2}\right)$. Starting from the infinite potential well wavefunctions, use first order perturbation theory to calculate the energy shifts for the two spin configurations.
5. If the Hamiltonian of a time dependent system is split into two parts with the form $\hat{H}(x, t)=\hat{H}_{0}(x)+\hat{H}^{\prime}(x, t)$, the wavefunction can be written as

$$
\psi(x, t)=\sum_{i} c_{i}(t) \phi_{i}(x) e^{-i E_{i} t / \hbar}
$$

where ϕ_{i} and E_{i} are the eigenfunctions and eigenvalues of \hat{H}_{0}.
(a) Derive the equations for the time dependence of $c_{i}(t)$.
(b) Show that, if the system is initially in state ϕ_{n} at $t=0$, the first order approximation to $c_{m}(t)(m \neq n)$ is

$$
c_{m}(t)=\frac{1}{i \hbar} \int_{0}^{t} d t^{\prime} H_{m n}^{\prime}\left(t^{\prime}\right) e^{i\left(E_{m}-E_{n}\right) t^{\prime} / \hbar}
$$

where $H_{m n}^{\prime}(t)=\langle m| \hat{H}^{\prime}|n\rangle$.
(c) A harmonic oscillator is in its ground state at time $t=0$. For $t>0$, it is subject to a time varying potential

$$
V(x, t)=F_{0} x e^{-t / \tau}
$$

where F_{0} is a constant and τ the decay time of the potential. Use firstorder time-dependent perturbation theory to calculate the probability of finding the oscillator in the first excited state at time t. What is the behaviour for $t \rightarrow \infty$?
(d) Is there any possibility of finding the oscillator in a higher excited state?

You may assume that the matrix elements of x between harmonic oscillator states n and n^{\prime} satisfy

$$
\left\langle n^{\prime}\right| x|n\rangle=\sqrt{\frac{\hbar}{2 m_{e} \omega_{c}}}\left(\sqrt{n} \delta_{n^{\prime}, n-1}+\sqrt{n+1} \delta_{n^{\prime}, n+1}\right) .
$$

END OF QUESTION PAPER

