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Further Quantum Mechanics

Attempt three of the five questions on the paper.
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1. (a)

Explain how the variational method is used to find the ground state
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energy, F, associated with a given Hamiltonian H. 1]

(b) Show that
H
WA |
(¥]¥)

where 9 is any trial wavefunction. 3]
(c) Consider the trial wavefunction 1 (z) = e~ Pl*l, where 3 is a variational

parameter. Sketch this wavefunction, and its first and second derivatives,

paying particular attention to the region around z = 0. 2]
(d) Use this wavefunction to estimate the ground state energy of the harmonic

oscillator, with [4]
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2. The Pauli matrices are
o 0 1 o — 0 —i oo — 1 0
10 Yo\ 0 L0 -1

(a) Show that [0y, 0,] = 2i0,, and that o2 = 05 =02 =1. 2]
(b) Find the eigenvalues and eigenvectors of each of o, and oy. (3]
(¢) An electron is placed in a region where there is a uniform magnetic field,

magnitude B, in the y direction. What is the Hamiltonian for the spin

part of the wavefunction for the electron? 1]

1

(d) If the electron is initially in the state ( 0 ) calculate the state vector

as a function of time. What are the possible outcomes of a measurement

of oy, and with what probability will each occur if the measurement is

made at time t? [4]
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3. (a)

How does the vector potential A in electromagnetism relate to the mag-
netic field B? Explain what is meant by gauge invariance in the context
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of electromagnetism. 3]

(b) Give a suitable form for A which corresponds to a uniform magnetic field
of magnitude B acting in the z direction. 1]

(¢) A hydrogen atom is placed in a uniform magnetic field. Use first order
perturbation theory to calculate the energy shift of the ground state due
to the quadratic term in the Hamiltonian

}AI, _ €2A2
2m,
where e and m, are the charge and mass of the electron. 3]
(The normalised ground state wavefunction of the hydrogen atom is
o(r) = (wa%)_% exp (—r/ap), where ag = 0.0529 nm is the Bohr radius.)

(d) Find a numerical value for the field B at which the energy shift is equal
to the Zeeman splitting gupB. You may assume that g = 2. 2]

(e) Sketch what happens to the zero-field lowest energy level of the atom, as
a function of magnetic field. 1]

4. For a system of N identical particles, in a state ¥ (r1,79,...7x), the proba-
bility of finding any one particle in a volume element d*r about the point r is
Pi(r) d3r, where

Pi(r) = /d3r2 /d3r3 e /d?’rN lW(r, 7o, ... 7N)|?

(a) Write down a suitable wavefunction for two, non-interacting, indistin-
guishable fermions in the orthonormal states ¢1(r) and ¢2(r). Give the
equivalent wavefunction for bosons. 2]

(b) In both cases, show that Pi(r) = 1 [|¢1(r)> + |¢2(r)[?]. 2]

Two indistinguishable, non-interacting, spin—% particles move in a one-dimensional
infinite well of width a (that is, V(z) = 0 for |z| < a/2, V(z) = oo for
|z| > a/2).

(c) What are the energies and wave-functions for the lowest energy configu-
rations with (i) total spin S =0, (ii) S =17 2]

(d) A weak interaction between the particles is switched on, with a short
range potential of the form Vpd(x1 — z2). Starting from the infinite po-
tential well wavefunctions, use first order perturbation theory to calculate
the energy shifts for the two spin configurations. [4]
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5. If the Hamiltonian of a time dependent system is split into two parts with the
form H(x,t) = Ho(x) + H'(x,t), the wavefunction can be written as

P(x,t) = Z ci(t) ¢y () e Eit/h

i

where ¢; and F; are the eigenfunctions and eigenvalues of H,.

(a)
(b)

(d)

Derive the equations for the time dependence of ¢;(t).

Show that, if the system is initially in state ¢, at ¢ = 0, the first order
approximation to ¢, (t) (m # n) is

/ b H(#) el En—E)Y [
em( ~ i

where H!_(t) = (m|H'|n).

A harmonic oscillator is in its ground state at time ¢t = 0. For ¢ > 0, it is
subject to a time varying potential

V(z,t) = Foze /T,

where Fp is a constant and 7 the decay time of the potential. Use first-
order time-dependent perturbation theory to calculate the probability of
finding the oscillator in the first excited state at time ¢{. What is the
behaviour for t — oco?

Is there any possibility of finding the oscillator in a higher excited state?

You may assume that the matrix elements of x between harmonic oscillator
states n and n’ satisfy
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(n'|z|n) = 4/ Do, (\/ﬁén n—1+vVn+16, ’n+1)

END OF QUESTION PAPER
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