

DEPARTMENT OF PHYSICS AND ASTRONOMY

Spring Semester 2006-2007

EXTRA-SOLAR PLANETS AND ASTROBIOLOGY

2 HOURS

Answer THREE questions.

Each question carries 10 marks.

A formula sheet and table of physical constants is attached to this paper.

The breakdown on the right-hand side of the paper is meant as a guide to the marks that can be obtained from each part.

PHY229

[3]

[1]

(a) One of the equations required to determine the mass and semi-major axis of a planet around a star is the general form of Kepler's third law,

$$P^2 = a^3 \left(\frac{4\pi^2}{GM_*} \right),$$

where P is the planet's orbital period, a is its orbital semi-major axis, M_* is the mass of the star and G is the gravitational constant.

Derive the second equation that relates the observed radial velocity, $V_* \sin i$, of the parent star to the minimum mass, $M_p \sin i$, of the planet:

$$M_p \sin i = \frac{V_* \sin i P}{2\pi a} M_*.$$

Explain what is significant about the angle i.

(b) Briefly discuss the limitations of the Doppler method of planet finding. [2]

(c) Sketch the period-radial velocity curve (in m s⁻¹ vs. years) of a Solar mass star which has a planet of mass $M_p \sin i = 3.8 \times 10^{27} \text{ kg} \left(=2M_{\text{jup}}\right)$ in a circular orbit of radius 0.5 AU.

Sketch what the period-radial velocity curve of the star would look like if this system *also* contains a planet with an orbital period of 1 year which causes a radial velocity variation of 20 m s⁻¹ in the star.

(d) A star orbits the centre of mass of a system in an elliptical orbit. Sketch typical radial velocity curves as viewed along the semi-major and semi-minor axes of the ellipse. [2]

2.

(a) Describe the fundamental properties of a cell. [3]

(b) What are the differences between prokaryotic and eukaryotic cells? [1]

(c) Why was the development of eukaryotic cells crucial to the development of advanced life on Earth? [1]

(d) What are proteins and why are they essential for life on Earth? [2.5]

(e) Briefly describe how the information stored in DNA is read and turned into a protein. [2.5]

PHY229 2

n		PHY229 CONTINUED
3.		
(a)	What were the major geological eons in the Earth's history? Describe the important events and types of life that were present on the Earth during these eons.	[4]
(b)	Explain how we think the surface temperature of the Earth has remained relatively stable over geological time.	[4]
(c)	How could life on Earth be detected from outside the Solar System?	[2]
4.		
(a)	Describe the evidence for a warm, wet past on Mars.	[3]
(b)	Describe the experiments conducted by the Viking landers to look for life on Mars. What were the results of each experiment and how have they been interpreted?	[4.5]
	interpreted?	[4.5]
(c)	Apart from the Earth and Mars, which planets or moons in the Solar System have the most chance of harbouring life and why?	[2.5]
5.		
(a)	What is the Fermi Paradox?	[1]
(b)	Describe and critically examine any THREE proposed solutions to the Fermi Paradox	[3×3]

END OF QUESTION PAPER

3