

The University Of Sheffield.

DEPARTMENT OF PHYSICS AND ASTRONOMY

Autumn 2006-2007

INTRODUCTORY MATHEMATICS FOR PHYSICISTS AND ASTRONOMERS

3 HOURS

Attempt ALL questions.

The breakdown on the right-hand side of the paper is meant as a guide to the marks that can be obtained from each part.

There are 200 possible marks for this paper.

Unit 1.

1. Simplify the following expression to the form x^a :

$$\frac{\left(\sqrt{x}\right)^{\frac{2}{3}}x^{2}}{x^{\frac{4}{3}}}.$$
 [2]

2. Combine the following expression into a single term:

$$4 \ln x + 2 \ln y + \ln z.$$
 [2]

3. Separate the following expression into two partial fractions:

$$\frac{3x}{(x+2)(x+3)}.$$
[4]

4. Combine the following into a single fraction:

$$\frac{2}{x^2} + \frac{3}{x}$$
. [2]

Unit 2.

- 5. Find all the solutions of the equation $2\cos^2 x \cos x 1 = 0$, for $0 \le x \le \pi$. [6]
- 6. A certain amount of the radioactive isotope of thorium ²³²Th was produced during a supernova explosion 2 billion years ago. This isotope decays according to the exponential law $N(t) = N_0 e^{-t/t_0}$, where N_0 and N are the initial number of atoms and the number of atoms after time *t*, respectively, and $t_0 = 2 \times 10^{10}$ years. Calculate the fraction of initial atoms that have not decayed since the explosion. What time is needed for one half of the initial atoms of thorium to decay? [6]

7. Find the first derivatives
$$\frac{dy}{dx}$$
 of the functions $y = f(x)$:

a)
$$y = (3 - 2x^5)^4$$
 [6]

b)
$$y = \frac{\sin(\omega x + \phi)}{x}$$
 [6]

8. Show that the time derivative
$$\frac{dI}{dt}$$
 of the function $I = ae^{-\lambda t}\cos(bt)$ is

$$\frac{dI}{dt} = -ae^{-\lambda t}\sqrt{\lambda^2 + b^2}\cos\left(bt + \arccos\left(\frac{\lambda}{\sqrt{\lambda^2 + b^2}}\right)\right).$$

Use the relation

$$\alpha \cos x + \beta \sin x = \sqrt{\alpha^2 + \beta^2} \cos \left(x + \arccos \left(\frac{\alpha}{\sqrt{\alpha^2 + \beta^2}} \right) \right).$$
 [8]

PHY112

CONTINUED

Unit 3.

9. If z = 1 - i, calculate and plot on an Argand diagram the following complex numbers:

- *z**, a) b) 3z,
- c)
- d)
- 2iz, $z^2,$ 2/z. e) [5]

10. Find the modulus, argument and complex conjugate of the following complex numbers:

- 1+2i, a) -3+2i, b) $6e^{i\pi/5}$ c) [4.5]
- If $z_1 = 2 + 4i$ and $z_2 = -2 + i$ calculate: 11.
 - a) $z_1 + z_2$, b) $Z_1Z_2,$ $\underline{z_1}$ c) [4.5] Z_2
- 12. Find the two square roots of 1 - i.
- An oscillating voltage of amplitude |V| and angular frequency ω is applied to a 13. circuit consisting of a capacitor and resistor connected in parallel. Show that the magnitude of the current which flows through the circuit is given by

$$\frac{|V|\sqrt{1+(\omega RC)^2}}{R}$$

.

State the formula which gives the phase difference between the current and voltage. What is this phase difference for $\omega = 0$ and $\omega \rightarrow \infty$?

[Hint: the complex reactance of a capacitor is $\frac{1}{i\omega C}$.]

[4]

[6]

Unit 4.

14. Evaluate the following integrals:

(i)
$$\int_{0}^{\infty} e^{-2x} dx$$
 [3]

(ii)
$$\int_{0}^{1} \frac{1}{x^{1/3}} dx$$
 [3]

(iii)
$$\int_{1}^{3} (5x-4)^2 dx$$
 [4]

15. Find the integrals:

(i)
$$\int 4\sin x \cos x \, dx$$
 [4]

(ii)
$$\int x e^{x^2} dx$$
 [4]

(iii)
$$\int \frac{x}{3x^2 + 2} dx$$
 [4]

16. Using the method of partial fractions find

$$\int \frac{x}{(2x+1)(x+1)} \, \mathrm{d}x \,.$$
 [6]

- 17. Show by integration that $\int \frac{1}{(a^2 x^2)^{1/2}} dx = \sin^{-1}\left(\frac{x}{a}\right) + c$ where *a* and *c* are constants. [4]
- 18. Using the method of integration by parts, find

$$\int x^2 \sin x \, \mathrm{d}x \,. \tag{6}$$

CONTINUED

PHY112

[6]

[6]

Unit 5.

19. Find the solution of the differential equation $\frac{dy}{dx} = 2y + 1$ with the initial condition y(x = 0) = 0.

20. Find the general solution of the differential equation
$$x \frac{dy}{dx} = y$$
. [8]

21. A spaceship of mass 10 tonnes moves towards Jupiter. The ship engines provide a constant accelerating force of 10^4 N. Write down Newton's Second Law as a second order differential equation of the motion of the spaceship assuming that gravitational forces can be neglected. Solve this equation to find the distance, *x*, as a function of time, *t*, with the initial conditions $x (t = 0) = 10^5$ km and speed v (t = 0) = 10 km/s. [8]

After what time (in days) will the spaceship reach the orbit of Mars (x = 80 million kilometres)? What will the speed of the spaceship be at that time? Give answers to 2 decimal places.

PHY112

Unit 6.

22. For the vectors $\mathbf{a} = 6\hat{\mathbf{i}} + 2\hat{\mathbf{j}} - 8\hat{\mathbf{k}}$, $\mathbf{b} = 3\hat{\mathbf{i}} - 5\hat{\mathbf{j}} + 7\hat{\mathbf{k}}$ and $\mathbf{c} = \hat{\mathbf{i}} - 8\hat{\mathbf{j}} + 4\hat{\mathbf{k}}$ find:

$$\begin{array}{ccc} (i) & \mathbf{3a+5b} \\ (ii) & \mathbf{a} \end{array}$$

$$\begin{array}{ll} (11) & \mathbf{a}.\mathbf{b} & [2] \\ (11i) & \mathbf{a}.(\mathbf{b}\times\mathbf{c}) & [2] \end{array}$$

23. (a) Given the three points
$$A(2, 2, 2)$$
, $B(5, 4, 6)$ and $C(0, -2, 1)$, find the angle

- between \overrightarrow{CA} (vector **a**) and \overrightarrow{CB} (vector **b**). [3]
 - (b) Find the values of α , β and γ which make the vectors **a**, **b** and **c** mutually perpendicular, where:

$$\mathbf{a} = \alpha \hat{\mathbf{i}} + 3\hat{\mathbf{j}} + 5\hat{\mathbf{k}}$$

$$\mathbf{b} = \hat{\mathbf{i}} + \beta \hat{\mathbf{j}} - 2\hat{\mathbf{k}}$$

$$\mathbf{c} = 4\hat{\mathbf{i}} - 3\hat{\mathbf{j}} + \gamma \hat{\mathbf{k}}$$

[4]

- (c) Show that the planes 3x + 4y 6z = 5 and 2x + 3y + 3z = 0 are perpendicular. [3]
- (d) Let $\mathbf{a} = \overrightarrow{QA}$ and $\mathbf{b} = \overrightarrow{QB}$ be two vectors from Q(0, 0, 0) in the diagram below, representing two sides of a parallelogram. Find the area of the parallelogram QACB.

[3]

24. (a) The diagram below shows a parallelepiped in which the three adjacent sides originating from Q (0, 0, 0) are represented by the three vectors (units are centimetres):

Find the volume of the parallelepiped.

[5]

(b) A force $\mathbf{F} = 14\hat{\mathbf{i}} - 4\hat{\mathbf{j}}$ newtons acts at the point P (1, 2, 0). Find its vector moment about the origin (0, 0, 0). [5]

[6]

Unit 7.

25. Obtain $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at the point (6, 3) for the following functions: (i) 8x + 4y - 3; [2] (ii) $(x^2 + y^2)^{1/2}$. [3]

- 26. Find the equation of the tangent plane at the point P (6, 7,-6) on the sphere $x^2 + y^2 + z^2 = 121$. Express your answer in the form z = ax + by + c where *a*, *b* and *c* are constants.
- 27. Find the stationary points of $f(x, y) = \frac{1}{3}x^3 xy^2 2y$ and the value of f(x, y) at these points. [3]

Unit 8.

[3]

28.	(a)	What is the probability of drawing a King on four consecutive occasions from a standard pack of 52 playing cards if each selected card is not returned	
		to the pack?	[1]
	(b)	A coin is spun until a "heads" is obtained. What is the probability of spinning 6 "tails" before the first "heads"?	[2]

- (c) A box contains 8 red balls and 4 blue balls. What is the probability of drawing the first four balls as red and the fifth ball as blue if
 - (i) the balls are replaced after each draw and
 - (ii) the balls are not replaced?

29. The continuous random variable x has a probability density function f(x) given by

$$f(x) = bx(6-x) \quad 0 \le x \le 6$$

$$f(x) = 0$$
 otherwise

where *b* is a constant.

[2]
[3]
[3]
[2]
[5]

30. Show that the function

$$p_n(x) = \frac{\lambda^n e^{-\lambda}}{n!}$$
 (*n* = 0, 1, 2....)

is a valid probability function.

[4]

[Hint: Use the Taylor expansion for e^{x} .]

END OF QUESTION PAPER