# Chap 5: Global Supply Chain (GSC)

- Globalisation of SC
   →Opportunity (Zara, Nokia), some unprepared
   →Increase risk especially in case of uncertainty
- Impact of globalisation
- Off-shoring decisions
- Risk Management in GSC
- Various aspects of evaluating GSC designs
- Case studies

# Impact of Globalisation in SC

### A) Opportunities:

- Developing countries (20-30% growth global sales)
- Example: Opportunity for Nokia: 2007
   China & India →20%;
  - BRIC countries (Brazil, Russia, India China)→25%
- Example: Consumer Electronic
  - → Cost reduction: light weight products, high value, cheap and easy to ship
  - $\rightarrow$  Large economy of scale
  - → Production consolidation in a few locations for multiple products

## Examples of Risk within GSCs

### • Huricane in 2005:

Damage 40,000 acres of plantation (25% drop in banana production)

### Introduction of Sony Play station 3:

Components shortage & company stock marked price dropped.

### • Main risks (>30%):

Natural disaster (35%), volatility of fuel prices (37%), performance of SC partners (38%), logistic capacity (33%).

### Massive fluctuation of euro vs \$:

2000-2008 [0.84 -1.60] → affects significantly fragile SCs

## **Off-shoring Decisions**

- Off-shoring → Benefits via cost reduction
  - Labor & fixed cost;
  - Possible tax advantage
- But Total Cost (not just unit cost!) is crucial

   Evaluate the complete sourcing process
   Risk of increase length of the following 3 flows (information flow; product flow & cash flow)

# Off-shoring Decisions (cont)

- Negative factors
  - Transport cost may increase
  - Cost reduction may decrease
    - Those off shore countries develop.
    - Wage inflation (2003-3008: 20% china but just 3% in US)
    - Exchange rate can be problematic
  - Risk of political/economical uncertainty
  - The decision may become less attractive

## Attractive products for GSCs

- High labor content
- Large production value
- Not too much variety
- Low transportation wrt product value
  - Components highly dense
  - Tight packaging (eg; IKEA ship components flat & high density; Nissan redesign some of their globally sourcing components, EU encourage similar pallets sizes)

 $\rightarrow$  better packaging  $\rightarrow$  decrease in transportation content

- Efficient analytical loading techniques!
- Selection of production process
  - which activity to off-shore?

# **Risk Management in GSCs**

- Global SCs are subject to more risks than local SCs
- Variety of risks:
  - Supply disruption
  - Supply delay and congestion at ports
  - Demand fluctuation
  - Exchange rate
  - Other risks and how to design mitigation strategies (student discussion)?

# Effects of Risk in GSCs

- Example: In March 2000, Plant owned by Royal Philips Electronics (New Mexico) caught fire, several companies were affected but let examine two firms that were affected differently, Nokia and Ericson.
  - Nokia: responded to the disruption using other suppliers → effect was contained
  - Ericson: had no backup suppliers in its network
     → suffered a loss of \$400M
- Need for flexible capacity is part of the SC design

# Cost of Flexibility vs Risk Effect (some examples)

- Having several suppliers
  - → reduce risk of disruption → increase cost (economy of scale not great) → overall control and confidentiality.
- Building larger plants or more plants than required

 $\rightarrow$ extra cost (idleness, etc)  $\rightarrow$ can be used if needed

Allowing extra inventory for rainy days
 →extra cost incl perishable/out of date goods → allow
 the SC to respond to high unexpected demand.

## Some Mitigations Strategies in GSCs

- **Increase capacity**: Low cost, decentralised capacity for predictable demand but centralised capacity otherwise.
- Redundancy of suppliers: redundant suppliers for high volume but centralised redundancy for low volume
- **Increase responsiveness**: favor cost over responsiveness for commodity products but the opposite for short life cycle products.
- **Increase Inventory**: decentralised inventory for predictable & low value products, centralise otherwise.
- **Increase flexibility**: favor cost vs flexibility for predictable & high value product, do the opposite otherwise. Centralise flexibility in a few places only if cost is high.
- Increase capability: favor capability over cost for high-value & high risk products, do the opposite otherwise. Centralise high capability where there is flexible source if possible.

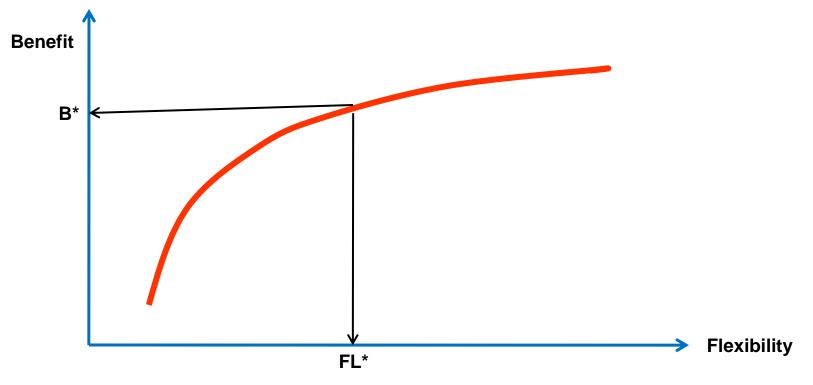
# <u>Three categories in mitigating</u> risks & uncertainties

### **1- New Product flexibility**

- Ability to launch new products quickly
- Useful in competitive environment where technology evolves & customer is paramount
- Use of common architecture & product platforms →various distinct models (PC industry, Pharmaceutical industry,...)

### **2- Mix Flexibility**

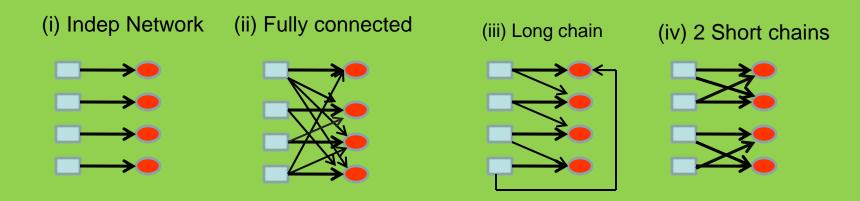
- Ability to produce a variety of products quickly
- Useful when demand is small & unpredictable, supply uncertain, technology evolving rapidly
- Consumer electronic (modular design & common components)


# Mitigating Risks (Cont)

### • 3- Volume flexibility (VF)

- Ability to operate well under various levels of output
  - Cyclical industries
  - Example: In 2008 automotive industry lacking VF suffered when the US market collapsed
    - $\rightarrow$  build up of inventory
    - $\rightarrow$ drop of steel price
    - →opportunity for the steel industry to take action and consolidate to avoid future drop.

## **Benefits & limitations of Flexibility**


 Benefits of Flexibility is not always increasing (see figure below)



### Flexibility with Chaining & Containment

### Chaining

### (Example of 4 plants and 4 products •)



- Compare (i) ...(iv) and others: cost vs risk [(iv) safer!]
- Chaining good for demand fluctuations but not supply disruption.

### • Containment: Smaller chains better for supply disruption

 $\rightarrow$  contain the impact of disruption.

Example of pig farming (large farms for economy of scale but put in groups to avoid risk of spread of desease.

# **Evaluation of GSCs**

- Sequence of cash flows over the period.
- Future cashs flows accounting for risks & uncertainties
- Discounted cash flow (DCF)
  - Basic idea: £1 today is worth less tomorrow (inflation, investment, interest rate, etc)
  - Discount factor ( $\alpha$ );  $\alpha = \frac{1}{(1+r)}$  where r is the rate of return over the next period, say 10% (also known as discount rate, hurdle rate or opportunity cost of capital).

### **Cash Flow**

• Example:

1£ next year is equivalent to 1/(1+0.1)=0.91 pence today.

- Consider a sequence of cash flows over the next T periods (say T=3 years): C<sub>0</sub>, C<sub>1</sub>,..., C<sub>T</sub> where C<sub>t</sub> represents the cash flow in year t (t=1,...,T).
- Net Present Value of the project based on the next T periods is:

$$NPV = C_0 + (\frac{1}{1+r})C_1 + (\frac{1}{1+r})^2 C_2 + \dots + (\frac{1}{1+r})^T C_T$$
$$NPV = \sum_{t=0}^{T} (\frac{1}{1+r})^t C_t$$

# Cash Flows (Cont)

### How to select the best SC:

- Consider K possible supply chains (say 3 options),each having its NPV, say NPV(k), k=1,...K found for each SC.
- The most profitable SC is the one with the largest NPV:

NPV(k\*)=Maximum{NPV(k); k=1,...,K}

### • Example:

Trips Logistics , a 3<sup>rd</sup> party logistic, wishes to lease some warehousing space. The expected demand is 100,000 units and each unit requires  $1m^2$  so the company needs  $100,000 m^2$ . The company sells each unit at £1.22 . The company can sign a 3 year deal to lease all the space at £1 per  $m^2$  whereas if they buy it on the spot market, it costs £1.20 $m^2$ . The discount rate is 10%. Does the company lease all of it or use the spot market?

## Example (cont)

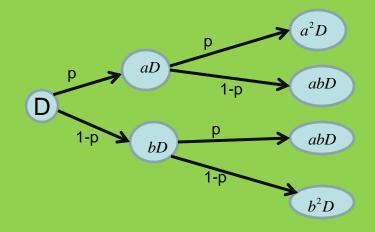
- Option: Lease from the market (spot market option)
  - Expected Annual Profit (Spot), E(S)

 $= (100,000 \times 1.22) - (100,000 \times 1.20) =$ £2000=Co

- Net Present Value (S)

$$NPV(S) = C_0 + \frac{C_0}{(1+0.1)} + \frac{C_0}{(1+0.1)^2} = 2,000 + \frac{2,000}{1.1} + \frac{2,000}{1.1^2} = \text{\pounds}5,471$$

- Option: Lease for 3 years
  - Expected Annual Profit (Lease), E(L)
    - $= (100,000 \times 1.22) (100,000 \times 1.00) =$ £22,000=C'o
  - Net Present Value (S)


$$NPV(L) = C'_{0} + \frac{C'_{0}}{(1+0.1)} + \frac{C'_{0}}{(1+0.1)^{2}} = 22,000 + \frac{22,000}{1.1} + \frac{22,000}{1.1^{2}} = \pounds 60,182$$

- Decision: NPV(L)>NPV(S) → Better to Lease
- Question: What happen if the demand drops or increases, if the spot market rate increases, does this strategy remains valid (robust)?

# **Dealing with Uncertainty**

### Use of binomial trees

Multiplicative binomial tree D: demand; a>1;b<1, (say a=1.1; b=0.85), go up with probability p and down with 1-p:</li>

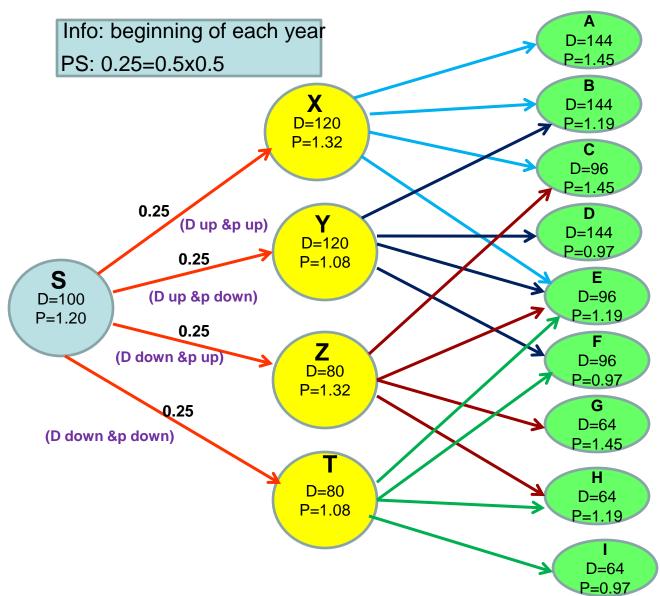


- Additive binomial tree: same as above except that
   D→D+u or D→D-v instead
- The coefficients a,b, u, v do not need to be fixed at each period.

## **Evaluation via Decision Trees**

- Knowledge of the alternatives at end of each period with corresponding probability. For instance by the end of next year, the market goes up by 10% with a 20% probability.
- Not necessary binary trees: demand, price, exchange rate if all three changed but independently →8 leaves from each node (ie 2<sup>3</sup>)

#### Construction of the tree


- Identify the duration of each period (month), # periods and the period discount rate r.
- Indentify the factors that could be affected (demand, price, etc) and choose the right distribution for each factor to show uncertainty.
- Represent the decision tree with defined states and transition probabilities
- Start from the end, evaluate each node then work backward until period 0 is reached where the final decision will be taken.

### Case study: Trips Logistics

- Same data as before + the following: demand can go up or down by 20% with p=0.5. The spot market price can also go up and down by 10% with p=0.5. The manager of Trips Logistics wishes to explore the following questions.
  - (i) Should the firm opt for the spot market strategy for their warehousing space?
  - (ii) Should they go for a lease strategy and cover any additional space through the spot market?
  - (iii) Exploring with the lease the possibility of having a flexible lease instead and cover remaining as in (ii)?
- Assume the price and demand are <u>independent</u>, the selling price remains at £1.22 per unit over the 3 year period, and the discount rate remains at 10% at the end of the next two years. Assist the manager in constructing the decision tree and evaluate each of the 3 options so to choose the right strategy for its SC.

### **Trips Logistics (Tree Construction)**

Construction of the decision tree with defined nodes



### Option 1: The spot market

#### Phase 1 (evaluate nodes A-I): compute cost & profit

Cost(A)=144,000x1.45=£208,800;

Profit(A)=Revenue-Cost=(144,000x1.22)-cost(A)=175,680-208,800=-£33,120

- Apply the calculations for all other nodes, see Table below.

| Nodes | Revenue  | Cost<br>(1,000) | Profit (£) |                         |
|-------|----------|-----------------|------------|-------------------------|
| А     | 144x1.22 | 144x1.45        | -33,120    |                         |
| В     | //       | 144x1.19        | 4,320      |                         |
| С     | 96x1.22  | 96x1.45         | -22,080    |                         |
| D     | 114x1.22 | 144x0.97        | 36,000     | Summary results for T=2 |
| E     | 96x1.22  | 96x1.19         | 2,880      |                         |
| F     | //       | 96x0.97         | 24,000     |                         |
| G     | 64x1.22  | 64x1.45         | -14,720    |                         |
| н     | //       | 64x1.19         | 1,920      |                         |
| 1     | //       | 64x0.97         | 16,000     |                         |

### Option 1: The spot market (cont)

#### • Phase 2 (evaluate nodes X,Y,Z,T): compute cost, NPV & Profit

- Expected profit (X) =Exp(X)=0.25(Profit(A,B,C, E))=0.25(-33,120+4,320-22,080+2,880)= → Exp(X) = -£12,000 (loss)
- PV(Exp(X))=Exp(X)/1.1=-12,000/1.1=-£10,909 (equivalent of true loss at T=1)
- Profit(X)=Revenue-cost+PV=120,000x1.22-120,000x1.32+(-10,909)= -£22,909
- Do the same for nodes, X,Y,Z and T, see results in table below.

| Node | Exp(.)  | PV      | Revenue | Cost   | Profit  |                |
|------|---------|---------|---------|--------|---------|----------------|
| Х    | -12,000 | -10,909 | 14,640  | 15,840 | -22,909 | Summary of T=1 |
| Y    | 16,800  | ?       | ?       | ?      | 32,073  |                |
| Z    | -8,000  | ?       | ?       | ?      | -15,273 |                |
| Т    | 11,200  | ?       | ?       | ?      | 21,382  |                |

#### • Phase 3 (evaluate final node S): compute cost, NPV & Profit.

Exp(S)=0.25(Profit(X,Y, Z, T)=0.25(-22,903+32,073-15,273+21,382)=£3,818 PV(Exp(S))=3,818/1.1=£3,471 Profit(S)=100,000x1.22-(100,000x1.200+3,471=£5,471

→ Expected NPV for having the space from the spot market is: **NPV(Spot)= £5,471** 

**Exercise:** Do extra scenarios (different variations etc and conclude, use excel if you can)

### **Option 2: Fixed Lease**

#### • Phase 1 (evaluate nodes A-I): compute cost & profit

Cost(A)=100,000x1.00+44,000x1.45=£163,800;

Profit(A)=Revenue-Cost=(144,000x1.22)-cost(A)=175,680-163,800=£11,880

Summary of T=2

- Apply the calculations for all other nodes, see table below.

| Nodes | Leased<br>space<br>@1£ | Warehouse<br>space<br>(>100,000) | Profit (£) |
|-------|------------------------|----------------------------------|------------|
| А     | 1000,000               | 44,000                           | 11,880     |
| В     | //                     | 44,000                           | 23,320     |
| С     | //                     | 0                                | 17,120     |
| D     | //                     | 44,000                           | 33,000     |
| E     | //                     | 0                                | 17,120     |
| F     | //                     | 0                                | //         |
| G     | //                     | 0                                | -21,920    |
| н     | //                     | 0                                | //         |
| 1     | //                     | 0                                | //         |

### **Option 2: Fixed Lease (cont)**

- Phase 2 (evaluate nodes X,Y,Z,T): compute cost, NPV & Profit
- Expected profit (X) =Exp(X)=0.25(Profit(A,B,C, E))=0.25(11,880+23,320+17,120+17,120)= → Exp(X) = £17,360 (profit)
- PV(Exp(X))=Exp(X)/1.1=17,360/1.1=£15,782 (equivalent of true profit at T=1)
- Profit(X)=Revenue-cost+PV=120,000x1.22-(100,000x1+20,000x1.32+15,782=£35,782
- Do the same for nodes, X,Y,Z and T, see results in table below.

| Node | Exp(.) | Warehouse<br>Space (spot) | Profit |
|------|--------|---------------------------|--------|
| Х    | 17,360 | 20,000                    | 35,782 |
| Y    | 22,640 | 20,000                    | 45,382 |
| Z    | 2,400  | 0                         | -4,582 |
| Т    | 2,400  | 0                         | -4,582 |

Summary of T=1

#### • Phase 3 (evaluate final node S): compute cost, NPV & Profit.

Exp(S)=0.25(Profit(X,Y, Z, T)=0.25(35,782+45,382-4,582-4,582)=£18,000

PV(Exp(S))=18,000/1.1=£16,364

Profit(S)=100,000x1.22-(100,000x1)+16,364=£38,364

→ Expected NPV for having the space from the Lease is: NPV(Lease)= £38,364

**Note:** This amount though it is still showing it is worth leasing instead of spot market (38,364>5,547) it is much less than the original profit of £60K. Produce a data table with the fixed lease as variable: 80,80,100,....120,000 and evaluate- repeat with a reduced but focussed range around the best option.

### **Option 3: Flexible Lease**

- Infos: 60,000<=D<=100,00 fixed at 1£m2+up front £10,000 (this is paid <u>once</u> up front)
- Phase 1 (evaluate nodes A-I): compute cost & profit

Nodes with D>100,000 not affected (see option 2, nodes A,B,D) Profit(C)=Revenue-Cost= $(96,000 \times 1.22)$ - $96,000 \times 1.00$ =£21,120

- Apply the calculations for all other nodes, see table below.

| Nodes | Leased space @1£ | Space spot<br>(>100,000) | Profit (£) |
|-------|------------------|--------------------------|------------|
| А     | 1000,000         | 44,000                   | 11,880*    |
| В     | //               | //                       | 23,320*    |
| С     | 96,000           | 0                        | 21,120     |
| D     | 100,000          | 44,000                   | 33,000*    |
| Е     | 96,000           | 0                        | 21,120     |
| F     | //               | 0                        | //         |
| G     | 64,000           | 0                        | 14,080     |
| н     | //               | 0                        | //         |
| I     | //               | 0                        | //         |

Summary of T=2

(\*: unchanged from option 2)

### **Option 3: Flexible Lease (cont)**

#### • Phase 2 (evaluate nodes X,Y,Z,T): compute cost, NPV & Profit

- Exp(X)=0.25(Profit(A,B,C, E))=0.25(11,880+23,320+21,120+21,120)= £19,360 (profit)
- PV(Exp(X))=Exp(X)/1.1=19,360/1.1=£17,600 (equivalent of true profit at T=1)
- Profit(X)=Revenue-Cost+PV=120,000x1.22-(100,000x1+20,000x1.32)+17,600=£37,600
- Do the same for nodes, X,Y,Z and T, see results in Table below.

| Node | Exp(.) | Warehouse<br>Space @1£ | Warehouse<br>Space (spot) | Profit |                |
|------|--------|------------------------|---------------------------|--------|----------------|
| Х    | 19,360 | 100,000                | 20,000                    | 37,600 |                |
| Y    | 24,640 | //                     | //                        | 47,200 | Summary of T=1 |
| Z    | 17,600 | 80,000                 | 0                         | 33,600 |                |
| Т    | //     | //                     | //                        | //     |                |

#### • Phase 3 (evaluate final node S): compute cost, NPV & Profit.

Exp(S)=0.25(Profit(X,Y, Z, T)=0.25(37600+47200+33600+33600)=£38,000

PV(Exp(S))=38,000/1.1=£34,545

Profit(S)=100,000x1.22-(100,000x1)+34,545=£56,545

→ Expected NPV for the lease is: Profit-Up front cost: NPV(Lease)= £46,545 (i.e., 56,545-10,000)

#### **Conclusion:** The flexible option is obviously more attractive (46,546>38,364)

 $\rightarrow$  extra profit=£8,181 [discuss impact of upfront cost & other factors  $\rightarrow$  A robust solution via Scenario Analysis with data table]- change £1 to1+? and upfront to 10.000-? and analyse.

## **Global SCs (conclusion)**

#### Discussion

- Impact of various places when leasing after year 2 say can affect customer service & cost due to extra manpower → affect the total cost
- Incorporate marketing cost in the decision tree so the demand can increase in a controlled (say 20% if extra cost=10K, 10% is 5K, 0 else)

### General decisions for GSCs under uncertainty

- (i) Combine strategic planning & financial planning
   (design a few strategic options and evaluate each one using decision trees)
- (ii) Use multiple metrics: various criteria (cost, customer service, response time, possibility of extension and market share etc)-
- (iii) Use financial analysis as an input while deciding, not as a way of just performing the accounting aspect of the decision.