Chap 5: Global Supply Chain (GSC)

- Globalisation of SC
\rightarrow Opportunity (Zara, Nokia) , some unprepared
\rightarrow Increase risk especially in case of uncertainty
- Impact of globalisation
- Off-shoring decisions
- Risk Management in GSC
- Various aspects of evaluating GSC designs
- Case studies

Impact of Globalisation in SC

- A) Opportunities:
- Developing countries (20-30\% growth global sales)
- Example: Opportunity for Nokia: 2007

China \& India $\boldsymbol{\rightarrow}$ 20\%;
BRIC countries (Brazil, Russia, India China) $\rightarrow 25 \%$

- Example: Consumer Electronic
\rightarrow Cost reduction: light weight products, high value, cheap and easy to ship
\rightarrow Large economy of scale
\rightarrow Production consolidation in a few locations for multiple products

Examples of Risk within GSCs

- Huricane in 2005:

Damage 40,000 acres of plantation (25\% drop in banana production)

- Introduction of Sony Play station 3:

Components shortage \& company stock marked price dropped.

- Main risks (>30\%):

Natural disaster (35\%), volatility of fuel prices (37\%), performance of SC partners (38\%), logistic capacity (33\%).

- Massive fluctuation of euro vs \$:

2000-2008 [0.84-1.60] \rightarrow affects significantly fragile SCs

Off-shoring Decisions

- Off-shoring \rightarrow Benefits via cost reduction
- Labor \& fixed cost;
- Possible tax advantage
- But Total Cost (not just unit cost!) is crucial
- Evaluate the complete sourcing process
- Risk of increase length of the following 3 flows
(information flow; product flow \& cash flow)

Off-shoring Decisions (cont)

- Negative factors
- Transport cost may increase
- Cost reduction may decrease
- Those off shore countries develop.
- Wage inflation (2003-3008: 20\% china but just 3\% in US)
- Exchange rate can be problematic
- Risk of political/economical uncertainty
- The decision may become less attractive

Attractive products for GSCs

- High labor content
- Large production value
- Not too much variety
- Low transportation wrt product value
- Components highly dense
- Tight packaging (eg; IKEA ship components flat \& high density; Nissan redesign some of their globally sourcing components, EU encourage similar pallets sizes)
\rightarrow better packaging \rightarrow decrease in transportation content
- Efficient analytical loading techniques!
- Selection of production process
- which activity to off-shore?

Risk Management in GSCs

- Global SCs are subject to more risks than local SCs
- Variety of risks:
- Supply disruption
- Supply delay and congestion at ports
- Demand fluctuation
- Exchange rate
- Other risks and how to design mitigation strategies (student discussion)?

Effects of Risk in GSCs

- Example: In March 2000, Plant owned by Royal Philips Electronics (New Mexico) caught fire, several companies were affected but let examine two firms that were affected differently, Nokia and Ericson.
- Nokia: responded to the disruption using other suppliers \rightarrow effect was contained
- Ericson: had no backup suppliers in its network \rightarrow suffered a loss of \$400M
- Need for flexible capacity is part of the SC design

Cost of Flexibility vs Risk Effect (some examples)

- Having several suppliers
\rightarrow reduce risk of disruption \rightarrow increase cost (economy of scale not great) \rightarrow overall control and confidentiality.
- Building larger plants or more plants than required
\rightarrow extra cost (idleness, etc) \rightarrow can be used if needed
- Allowing extra inventory for rainy days
\rightarrow extra cost incl perishable/out of date goods \rightarrow allow the SC to respond to high unexpected demand.

Some Mitigations Strategies in GSCs

- Increase capacity: Low cost, decentralised capacity for predictable demand but centralised capacity otherwise.
- Redundancy of suppliers redundant suppliers for high volume but centralised redundancy for low volume
- Increase responsiveness: favor cost over responsiveness for commodity products but the opposite for short life cycle products.
- Increase Inventory: decentralised inventory for predictable \& low value products, centralise otherwise.
- Increase flexibility: favor cost vs flexibility for predictable \& high value product, do the opposite otherwise. Centralise flexibility in a few places only if cost is high.
- Increase capability: favor capability over cost for high-value \& high risk products, do the opposite otherwise. Centralise high capability where there is flexible source if possible.

Three categories in mitigating risks \& uncertainties

1- New Product flexibility

- Ability to launch new products quickly
- Useful in competitive environment where technology evolves \& customer is paramount
- Use of common architecture \& product platforms \rightarrow various distinct models (PC industry, Pharmaceutical industry,...)

2- Mix Flexibility

- Ability to produce a variety of products quickly
- Useful when demand is small \& unpredictable, supply uncertain, technology evolving rapidly
- Consumer electronic (modular design \& common components)

Mitigating Risks (Cont)

- 3- Volume flexibility (VF)
- - Ability to operate well under various levels of output
- Cyclical industries
- Example: In 2008 automotive industry lacking VF suffered when the US market collapsed
\rightarrow build up of inventory
\rightarrow drop of steel price
\rightarrow opportunity for the steel industry to take action and consolidate to avoid future drop.

Benefits \& limitations of Flexibility

- Benefits of Flexibility is not always increasing (see figure below)

Flexibility with Chaining \& Containment

- Chaining

(Example of 4 plants \square and 4 products \circ)
(i) Indep Network

(ii) Fully connected

(iii) Long chain

(iv) 2 Short chains

- Compare (i) ...(iv) and others: cost vs risk [(iv) safer!]
- Chaining good for demand fluctuations but not supply disruption.
- Containment: Smaller chains better for supply disruption \rightarrow contain the impact of disruption.
Example of pig farming (large farms for economy of scale but put in groups to avoid risk of spread of desease.

Evaluation of GSCs

- Sequence of cash flows over the period.
- Future cashs flows accounting for risks \& uncertainties
- Discounted cash flow (DCF)
- Basic idea: $£ 1$ today is worth less tomorrow (inflation, investment, interest rate, etc)
- Discount factor $(\alpha) ; \alpha=\frac{1}{(1+r)}$ where r is the rate of return over the next period, say 10% (also known as discount rate, hurdle rate or opportunity cost of capital).

Cash Flow

- Example:

$1 £$ next year is equivalent to $1 /(1+0.1)=0.91$ pence today.

- Consider a sequence of cash flows over the next T periods (say T=3 years): $C_{0}, C_{1}, \ldots, C_{T}$ where C_{t} represents the cash flow in year $\mathrm{t}(\mathrm{t}=1, \ldots, \mathrm{~T})$.
- Net Present Value of the project based on the next T periods is:

$$
\begin{aligned}
& N P V=C_{0}+\left(\frac{1}{1+r}\right) C_{1}+\left(\frac{1}{1+r}\right)^{2} C_{2}+\ldots+\left(\frac{1}{1+r}\right)^{T} C_{T} \\
& N P V=\sum_{t=0}^{T}\left(\frac{1}{1+r}\right)^{r} C_{t}
\end{aligned}
$$

Cash Flows (Cont)

- How to select the best SC:

- Consider K possible supply chains (say 3 options),each having its NPV, say NPV(k), $k=1, \ldots \mathrm{~K}$ found for each SC.
- The most profitable SC is the one with the largest NPV:

$$
\text { NPV }\left(k^{*}\right)=\text { Maximum\{NPV(k); k=1, .., K\} }
$$

- Example:

Trips Logistics , a $3^{\text {rd }}$ party logistic, wishes to lease some warehousing space. The expected demand is 100,000 units and each unit requires $1 m^{2}$ so the company needs $100,000 \mathrm{~m}^{2}$. The company sells each unit at $£ 1.22$. The company can sign a 3 year deal to lease all the space at $£ 1$ per m^{2} whereas if they buy it on the spot market, it costs $£ 1.20 \mathrm{~m}^{2}$. The discount rate is 10%. Does the company lease all of it or use the spot market?

Example (cont)

- Option: Lease from the market (spot market option)
- Expected Annual Profit (Spot), E(S)

$$
=(100,000 \times 1.22)-(100,000 \times 1.20)=£ 2000=\mathrm{Co}
$$

- Net Present Value (S)

$$
\operatorname{NPV}(S)=C_{0}+\frac{C_{0}}{(1+0.1)}+\frac{C_{0}}{(1+0.1)^{2}}=2,000+\frac{2,000}{1.1}+\frac{2,000}{1.1^{2}}=£ 5,471
$$

- Option: Lease for 3 years
- Expected Annual Profit (Lease), E(L)

$$
=(100,000 \times 1.22)-(100,000 \times 1.00)=£ 22,000=C^{\prime} \circ
$$

- Net Present Value (S)

$$
N P V(L)=C_{0}^{\prime}+\frac{C_{0}^{\prime}}{(1+0.1)}+\frac{C_{0}^{\prime}}{(1+0.1)^{2}}=22,000+\frac{22,000}{1.1}+\frac{22,000}{1.1^{2}}=£ 60,182
$$

- Decision: NPV(L) $>\mathrm{NPV}(\mathrm{S}) \rightarrow$ Better to Lease
- Question: What happen if the demand drops or increases, if the spot market rate increases, does this strategy remains valid (robust)?

Dealing with Uncertainty

- Use of binomial trees
- Multiplicative binomial tree D: demand; $a>1 ; b<1$, (say $a=1.1$; $b=0.85$), go up with probability p and down with $1-p$:

- Additive binomial tree: same as above except that $D \rightarrow D+u$ or $D \rightarrow$ D-v instead
- The coefficients a, b, u, v do not need to be fixed at each period.

Evaluation via Decision Trees

- Knowledge of the alternatives at end of each period with corresponding probability. For instance by the end of next year, the market goes up by 10% with a 20% probability.
- Not necessary binary trees: demand, price, exchange rate if all three changed but independently $\rightarrow 8$ leaves from each node (ie 2^{3})
- Construction of the tree
- Identify the duration of each period (month), \# periods and the period discount rate r.
- Indentify the factors that could be affected (demand, price, etc) and choose the right distribution for each factor to show uncertainty.
- Represent the decision tree with defined states and transition probabilities
- Start from the end, evaluate each node then work backward until period 0 is reached where the final decision will be taken.

Case study: Trips Logistics

- Same data as before + the following: demand can go up or down by 20% with $p=0.5$. The spot market price can also go up and down by 10% with $p=0.5$. The manager of Trips Logistics wishes to explore the following questions.
(i) Should the firm opt for the spot market strategy for their warehousing space?
(ii) Should they go for a lease strategy and cover any additional space through the spot market?
(iii) Exploring with the lease the possibility of having a flexible lease instead and cover remaining as in (ii)?
- Assume the price and demand are independent, the selling price remains at $£ 1.22$ per unit over the 3 year period, and the discount rate remains at 10% at the end of the next two years. Assist the manager in constructing the decision tree and evaluate each of the 3 options so to choose the right strategy for its SC.

Trips Logistics (Tree Construction)

- Construction of the decision tree with defined nodes

Option 1: The spot market

- Phase 1 (evaluate nodes A-I): compute cost \& profit
$\operatorname{Cost}(A)=144,000 \times 1.45=£ 208,800$;
Profit $(A)=$ Revenue-Cost=(144,000x1.22) $-\operatorname{cost}(A)=175,680-208,800=-£ 33,120$
- Apply the calculations for all other nodes, see Table below.

Nodes	Revenue	Cost $(\mathbf{1 , 0 0 0})$	Profit (£)
A	144×1.22	144×1.45	$-33,120$
B	I/	144×1.19	4,320
C	96×1.22	96×1.45	$-22,080$
D	114×1.22	144×0.97	36,000
E	96×1.22	96×1.19	2,880
F	I/	96×0.97	24,000
G	64×1.22	64×1.45	$-14,720$
H	I/	64×1.19	1,920
I	I/	64×0.97	16,000

Summary results for $\mathrm{T}=2$

Option 1: The spot market (cont)

- Phase 2 (evaluate nodes X,Y,Z,T): compute cost, NPV \& Profit

Expected profit $(X)=\operatorname{Exp}(X)=0.25(\operatorname{Profit}(A, B, C, E))=0.25(-33,120+4,320-22,080+2,880)=\rightarrow \operatorname{Exp}(X)$ $=-£ 12,000$ (loss)
$\operatorname{PV}(\operatorname{Exp}(X))=\operatorname{Exp}(X) / 1 \cdot 1=-12,000 / 1.1=-£ 10,909$ (equivalent of true loss at $T=1$)

- $\quad \operatorname{Profit}(\mathrm{X})=$ Revenue-cost+PV=120,000×1.22-120,000×1.32+(-10,909)=-£22,909
- Do the same for nodes, X, Y, Z and T, see results in table below.

Node	Exp(.)	PV	Revenue	Cost	Profit
X	$-12,000$	$-10,909$	14,640	15,840	$-22,909$
Y	16,800	$?$	$?$	$?$	32,073
Z	$-8,000$	$?$	$?$	$?$	$-15,273$
T	11,200	$?$	$?$	$?$	21,382

- Phase 3 (evaluate final node S): compute cost, NPV \& Profit.
$\operatorname{Exp}(S)=0.25(\operatorname{Profit}(X, Y, Z, T)=0.25(-22,903+32,073-15,273+21,382)=£ 3,818$
$\operatorname{PV}(\operatorname{Exp}(S))=3,818 / 1.1=£ 3,471$
Profit(S) $=100,000 \times 1.22-(100,000 \times 1.200+3,471=£ 5,471$
\rightarrow Expected NPV for having the space from the spot market is: NPV(Spot) $=£ 5,471$

Exercise: Do extra scenarios (different variations etc and conclude, use excel if you can)

Option 2: Fixed Lease

- Phase 1 (evaluate nodes A-I): compute cost \& profit
$\operatorname{Cost}(A)=100,000 \times 1.00+44,000 \times 1.45=£ 163,800$;
Profit $(A)=$ Revenue - Cost $=(144,000 \times 1.22)-\operatorname{cost}(A)=175,680-163,800=£ 11,880$
- Apply the calculations for all other nodes, see table below.

Nodes	Leased space @1£	Warehouse space $(>100,000)$	Profit (£)
A	1000,000	44,000	11,880
B	//	44,000	23,320
C	//	0	17,120
D	//	44,000	33,000
E	//	0	17,120
F	//	0	//
G	//	0	$-21,920$
H	//	0	//
I	//	0	$/ /$

Summary of T=2

Option 2: Fixed Lease (cont)

- Phase 2 (evaluate nodes X,Y,Z,T): compute cost, NPV \& Profit

Expected profit $(X)=\operatorname{Exp}(X)=0.25(\operatorname{Profit}(A, B, C, E))=0.25(11,880+23,320+17,120+17,120)=\rightarrow$ $\operatorname{Exp}(X)=£ 17,360$ (profit)
$\operatorname{PV}(\operatorname{Exp}(X))=\operatorname{Exp}(X) / 1.1=17,360 / 1.1=£ 15,782$ (equivalent of true profit at $T=1$)

- \quad Profit $(X)=$ Revenue-cost+PV=120,000×1.22-(100,000×1 $+20,000 \times 1.32+15,782=£ 35,782$
- Do the same for nodes, X, Y, Z and T, see results in table below.

Node	Exp(.)	Warehouse Space (spot)	Profit
X	17,360	20,000	35,782
Y	22,640	20,000	45,382
Z	2,400	0	$-4,582$
T	2,400	0	$-4,582$

Summary of $T=1$

- Phase 3 (evaluate final node S): compute cost, NPV \& Profit.
$\operatorname{Exp}(S)=0.25(\operatorname{Profit}(X, Y, Z, T)=0.25(35,782+45,382-4,582-4,582)=£ 18,000$
$\operatorname{PV}(\operatorname{Exp}(S))=18,000 / 1.1=£ 16,364$
Profit(S) $=100,000 \times 1.22-(100,000 \times 1)+16,364=£ 38,364$
\rightarrow Expected NPV for having the space from the Lease is: NPV(Lease)= $£ 38,364$
Note: This amount though it is still showing it is worth leasing instead of spot market $(38,364>5,547)$ it is much less than the original profit of $£ 60 \mathrm{~K}$. Produce a data table with the fixed lease as variable: $80,80,100, \ldots .120,000$ and evaluate- repeat with a reduced but focussed range around the best option.

Option 3: Flexible Lease

- Infos: $60,000<=\mathrm{D}<=100,00$ fixed at $1 £ m 2+$ up front $£ 10,000$ (this is paid once up front)
- Phase 1 (evaluate nodes A-I): compute cost \& profit

Nodes with D>100,000 not affected (see option 2, nodes A,B,D)
Profit(C)=Revenue-Cost=(96,000×1.22)-96,000×1.00=£21,120

- Apply the calculations for all other nodes, see table below.

Nodes	Leased space @1£	Space spot $(>100,000)$	Profit (£)
A	1000,000	44,000	$11,880^{*}$
B	//	//	$23,320^{*}$
C	96,000	0	21,120
D	100,000	44,000	$33,000^{*}$
E	96,000	0	21,120
F	//	0	//
G	64,000	0	14,080
H	//	0	$/ /$
I	/I	0	/I

Summary of T=2
(*: unchanged from option 2)

Option 3: Flexible Lease (cont)

- Phase 2 (evaluate nodes X,Y,Z,T): compute cost, NPV \& Profit $\operatorname{Exp}(X)=0.25(\operatorname{Profit}(A, B, C, E))=0.25(11,880+23,320+21,120+21,120)=£ 19,360$ (profit)
- $\quad P V(\operatorname{Exp}(X))=\operatorname{Exp}(X) / 1.1=19,360 / 1.1=£ 17,600$ (equivalent of true profit at $T=1$)
- \quad Profit $(X)=$ Revenue-Cost+PV=120,000x1.22-(100,000x1 $+20,000 \times 1.32)+17,600=£ 37,600$
- Do the same for nodes, X, Y, Z and T, see results in Table below.

Node	Exp(.)	Warehouse Space @1£	Warehouse Space (spot)	Profit
X	19,360	100,000	20,000	37,600
Y	24,640	//	//	47,200
Z	17,600	80,000	0	33,600
T	//	//	//	//

Summary of $\mathrm{T}=1$

- Phase 3 (evaluate final node S): compute cost, NPV \& Profit.
$\operatorname{Exp}(S)=0.25(\operatorname{Profit}(X, Y, Z, T)=0.25(37600+47200+33600+33600)=£ 38,000$
$\operatorname{PV}(\operatorname{Exp}(S))=38,000 / 1.1=£ 34,545$
Profit(S) $=100,000 \times 1.22-(100,000 \times 1)+34,545=£ 56,545$
\rightarrow Expected NPV for the lease is: Profit-Up front cost: NPV(Lease) $=£ 46,545$ (i.e., 56,545-10,000)

Conclusion: The flexible option is obviously more attractive $(46,546>38,364)$ \rightarrow extra profit $=£ 8,181$ [discuss impact of upfront cost $\&$ other factors \rightarrow A robust solution via Scenario Analysis with data table]- change $£ 1$ to $1+$? and upfront to 10,000-? and analvse.

Global SCs (conclusion)

- Discussion

- Impact of various places when leasing after year 2 say can affect customer service \& cost due to extra manpower \rightarrow affect the total cost
- Incorporate marketing cost in the decision tree so the demand can increase in a controlled (say 20% if extra cost $=10 \mathrm{~K}, 10 \%$ is $5 \mathrm{~K}, 0$ else)

- General decisions for GSCs under uncertainty

(i) Combine strategic planning \& financial planning
(design a few strategic options and evaluate each one using decision trees)
(ii) Use multiple metrics: various criteria (cost, customer service, response time, possibility of extension and market share etc)-
(iii) Use financial analysis as an input while deciding, not as a way of just performing the accounting aspect of the decision.

