MTH4100 Calculus I

Bill Jackson School of Mathematical Sciences QMUL

Week 9, Semester 1, 2012

Image: A math a math

.∃ . . .

Estimating areas with finite sums

Example:

How can we compute the area of the shaded region R?

Approximation algorithm

- Subdivide the interval [0, 1] into *n* subintervals of equal width $\Delta x = \frac{1}{n}$.
- Choose a point c_k in the k'th subinterval. For example we could use:
 - midpoint rule: Choose c_k in the middle of the k'th subinterval.
 - **2** max rule: Choose c_k such that $f(c_k)$ is maximum.
 - min rule: choose c_k such that f(c_k) is minimum.

Approximation algorithm - continued

• Construct *n* rectangles with base Δx and height c_k .

 Approximate the area by calculating the sum of the areas of these rectangles f(c₁)Δx + f(c₂)Δx + ... + f(c_n)Δx.

Approximation algorithm - continued

• Construct *n* rectangles with base Δx and height c_k .

 Approximate the area by calculating the sum of the areas of these rectangles $f(c_1)\Delta x + f(c_2)\Delta x + \ldots + f(c_n)\Delta x$.

Note that the area of R will lie between the upper sum i.e the sum we obtain using the max rule to choose the points c_k and the *lower* sum i.e the sum we obtain using the min rule to choose the points c_k . So we can estimate how close our approximation is to the correct area by calculating the difference between these two sums.

We can improve the accuracy of our approximation by choosing shorter subintervals i.e. larger values for n.

We can improve the accuracy of our approximation by choosing shorter subintervals i.e. larger values for n.

If the approximations converge to the same limit as $n \to \infty$, no matter how we choose the points c_k , then this limit will be the area of R.

To handle sums with many terms, we need a more concise notation. Let

$$\sum_{k=1}^n a_k = a_1 + a_2 + \ldots + a_n$$

where

Example: $\sum_{k=1}^{3} (-1)^k k$

・ロット (日) (日) (日) (日)

Algebraic properties of sums

Example:

$$\sum_{k=1}^{n} (5k - k^3) = 5 \sum_{k=1}^{n} k - \sum_{k=1}^{n} k^3$$

by rules 1 and 2.

(ロ) (問) (E) (E) (E)

Some common sums

Theorem

• Sum of first n natural numbers:

$$\sum_{k=1}^n k = \frac{n(n+1)}{2}.$$

• Sum of first n squares:

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

• Sum of first n cubes:

$$\sum_{k=1}^n k^3 = \left(\frac{n(n+1)}{2}\right)^2$$

Bill Jackson

<ロ> (四) (四) (三) (三) (三) (三)

We can now compute the area of the region R below the graph of $y = 1 - x^2$ and above the interval [0, 1].

We can now compute the area of the region R below the graph of $y = 1 - x^2$ and above the interval [0, 1].

• Subdivide the interval into *n* subintervals of width $\Delta x = \frac{1}{n}$: $\begin{bmatrix} 0, \frac{1}{n} \end{bmatrix}, \begin{bmatrix} \frac{1}{n}, \frac{2}{n} \end{bmatrix}, \begin{bmatrix} \frac{2}{n}, \frac{3}{n} \end{bmatrix}, \dots, \begin{bmatrix} \frac{n-1}{n}, \frac{n}{n} \end{bmatrix}$.

We can now compute the area of the region R below the graph of $y = 1 - x^2$ and above the interval [0, 1].

- Subdivide the interval into *n* subintervals of width $\Delta x = \frac{1}{n}$: $\begin{bmatrix} 0, \frac{1}{n} \end{bmatrix}, \begin{bmatrix} \frac{1}{n}, \frac{2}{n} \end{bmatrix}, \begin{bmatrix} \frac{2}{n}, \frac{3}{n} \end{bmatrix}, \dots, \begin{bmatrix} \frac{n-1}{n}, \frac{n}{n} \end{bmatrix}$.
- Use the min rule to choose the points c_k : this gives $c_k = \frac{k}{n}$, $k \in \mathbb{N}$ is the rightmost point in the k'th subinterval.

・ 同 ・ ・ ヨ ・ ・ ヨ ・

We can now compute the area of the region R below the graph of $y = 1 - x^2$ and above the interval [0, 1].

- Subdivide the interval into *n* subintervals of width $\Delta x = \frac{1}{n}$: $\begin{bmatrix} 0, \frac{1}{n} \end{bmatrix}, \begin{bmatrix} \frac{1}{n}, \frac{2}{n} \end{bmatrix}, \begin{bmatrix} \frac{2}{n}, \frac{3}{n} \end{bmatrix}, \dots, \begin{bmatrix} \frac{n-1}{n}, \frac{n}{n} \end{bmatrix}$.
- Use the min rule to choose the points c_k : this gives $c_k = \frac{k}{n}$, $k \in \mathbb{N}$ is the rightmost point in the k'th subinterval.
- The lower sum is $f\left(\frac{1}{n}\right)\frac{1}{n}+f\left(\frac{2}{n}\right)\frac{1}{n}+\ldots+f\left(\frac{n}{n}\right)\frac{1}{n}=\sum_{k=1}^{n}f\left(\frac{k}{n}\right)\frac{1}{n}=\frac{2}{3}-\frac{1}{2n}-\frac{1}{6n^{2}}.$ Hence the area of R is at least $\frac{2}{3}-\frac{1}{2n}-\frac{1}{6n^{2}}.$

< □ > < □ > < □ >

We can now compute the area of the region R below the graph of $y = 1 - x^2$ and above the interval [0, 1].

- Subdivide the interval into *n* subintervals of width $\Delta x = \frac{1}{n}$: $\begin{bmatrix} 0, \frac{1}{n} \end{bmatrix}, \begin{bmatrix} \frac{1}{n}, \frac{2}{n} \end{bmatrix}, \begin{bmatrix} \frac{2}{n}, \frac{3}{n} \end{bmatrix}, \dots, \begin{bmatrix} \frac{n-1}{n}, \frac{n}{n} \end{bmatrix}$.
- Use the min rule to choose the points c_k : this gives $c_k = \frac{k}{n}$, $k \in \mathbb{N}$ is the rightmost point in the k'th subinterval.
- The lower sum is $f\left(\frac{1}{n}\right)\frac{1}{n}+f\left(\frac{2}{n}\right)\frac{1}{n}+\ldots+f\left(\frac{n}{n}\right)\frac{1}{n}=\sum_{k=1}^{n}f\left(\frac{k}{n}\right)\frac{1}{n}=\frac{2}{3}-\frac{1}{2n}-\frac{1}{6n^2}.$ Hence the area of R is at least $\frac{2}{3}-\frac{1}{2n}-\frac{1}{6n^2}.$
- A similar calculation shows that the upper sum is $\frac{2}{3} + \frac{1}{2n} \frac{1}{6n^2}$ and hence the area of R is at most $\frac{2}{3} - \frac{1}{2n} - \frac{1}{6n^2}$.

We can now compute the area of the region R below the graph of $y = 1 - x^2$ and above the interval [0, 1].

- Subdivide the interval into *n* subintervals of width $\Delta x = \frac{1}{n}$: $\begin{bmatrix} 0, \frac{1}{n} \end{bmatrix}, \begin{bmatrix} \frac{1}{n}, \frac{2}{n} \end{bmatrix}, \begin{bmatrix} \frac{2}{n}, \frac{3}{n} \end{bmatrix}, \dots, \begin{bmatrix} \frac{n-1}{n}, \frac{n}{n} \end{bmatrix}$.
- Use the min rule to choose the points c_k : this gives $c_k = \frac{k}{n}$, $k \in \mathbb{N}$ is the rightmost point in the k'th subinterval.
- The lower sum is $f\left(\frac{1}{n}\right)\frac{1}{n}+f\left(\frac{2}{n}\right)\frac{1}{n}+\ldots+f\left(\frac{n}{n}\right)\frac{1}{n}=\sum_{k=1}^{n}f\left(\frac{k}{n}\right)\frac{1}{n}=\frac{2}{3}-\frac{1}{2n}-\frac{1}{6n^2}.$ Hence the area of R is at least $\frac{2}{3}-\frac{1}{2n}-\frac{1}{6n^2}.$
- A similar calculation shows that the upper sum is $\frac{2}{3} + \frac{1}{2n} \frac{1}{6n^2}$ and hence the area of R is at most $\frac{2}{3} - \frac{1}{2n} - \frac{1}{6n^2}$.
- As $n \to \infty$, both sums converge to $\frac{2}{3}$. Therefore, the area of R is $\frac{2}{3}$.

< 日 > < 回 > < 回 > < 回 > < 回 > <

We can now compute the area of the region R below the graph of $y = 1 - x^2$ and above the interval [0, 1].

- Subdivide the interval into *n* subintervals of width $\Delta x = \frac{1}{n}$: $\begin{bmatrix} 0, \frac{1}{n} \end{bmatrix}, \begin{bmatrix} \frac{1}{n}, \frac{2}{n} \end{bmatrix}, \begin{bmatrix} \frac{2}{n}, \frac{3}{n} \end{bmatrix}, \dots, \begin{bmatrix} \frac{n-1}{n}, \frac{n}{n} \end{bmatrix}$.
- Use the min rule to choose the points c_k : this gives $c_k = \frac{k}{n}$, $k \in \mathbb{N}$ is the rightmost point in the *k*'th subinterval.
- The lower sum is $f\left(\frac{1}{n}\right)\frac{1}{n}+f\left(\frac{2}{n}\right)\frac{1}{n}+\ldots+f\left(\frac{n}{n}\right)\frac{1}{n}=\sum_{k=1}^{n}f\left(\frac{k}{n}\right)\frac{1}{n}=\frac{2}{3}-\frac{1}{2n}-\frac{1}{6n^{2}}.$ Hence the area of R is at least $\frac{2}{3}-\frac{1}{2n}-\frac{1}{6n^{2}}.$
- A similar calculation shows that the upper sum is $\frac{2}{3} + \frac{1}{2n} \frac{1}{6n^2}$ and hence the area of R is at most $\frac{2}{3} - \frac{1}{2n} - \frac{1}{6n^2}$.
- As $n \to \infty$, both sums converge to $\frac{2}{3}$. Therefore, the area of R is $\frac{2}{3}$.

Note that any other choice of c_k would give the same limit (since its sum must lie between the upper and lower sums).

Riemann sums and the indefinite integral

Lecture continued on whiteboard - see online lecture notes.

() < </p>