MTH4100 Calculus I

Bill Jackson
School of Mathematical Sciences QMUL

Week 9, Semester 1, 2012

Estimating areas with finite sums

Example:

How can we compute the area of the shaded region R ?

Approximation algorithm

- Subdivide the interval $[0,1]$ into n subintervals of equal width $\Delta x=\frac{1}{n}$.
- Choose a point c_{k} in the k 'th subinterval. For example we could use:
(1) midpoint rule: Choose c_{k} in the middle of the k 'th subinterval.
(2) max rule: Choose c_{k} such that $f\left(c_{k}\right)$ is maximum.
(3) min rule: choose c_{k} such that $f\left(c_{k}\right)$ is minimum.

Approximation algorithm - continued

- Construct n rectangles with base Δx and height c_{k}.

- Approximate the area by calculating the sum of the areas of these rectangles $f\left(c_{1}\right) \Delta x+f\left(c_{2}\right) \Delta x+\ldots+f\left(c_{n}\right) \Delta x$.

Approximation algorithm - continued

- Construct n rectangles with base Δx and height c_{k}.

- Approximate the area by calculating the sum of the areas of these rectangles $f\left(c_{1}\right) \Delta x+f\left(c_{2}\right) \Delta x+\ldots+f\left(c_{n}\right) \Delta x$.

Note that the area of R will lie between the upper sum i.e the sum we obtain using the max rule to choose the points c_{k} and the lower sum i.e the sum we obtain using the min rule to choose the points c_{k}. So we can estimate how close our approximation is to the correct area by calculating the difference between these two sums.

Approximation algorithm - continued

We can improve the accuracy of our approximation by choosing shorter subintervals i.e. larger values for n.

Approximation algorithm - continued

We can improve the accuracy of our approximation by choosing shorter subintervals i.e. larger values for n.

If the approximations converge to the same limit as $n \rightarrow \infty$, no matter how we choose the points c_{k}, then this limit will be the area of R.

To handle sums with many terms, we need a more concise notation. Let

$$
\sum_{k=1}^{n} a_{k}=a_{1}+a_{2}+\ldots+a_{n}
$$

where

Example: $\sum_{k=1}^{3}(-1)^{k} k$

Algebraic properties of sums

Algebra Rules for Finite Sums

1. Sum Rule:

$$
\sum_{k=1}^{n}\left(a_{k}+b_{k}\right)=\sum_{k=1}^{n} a_{k}+\sum_{k=1}^{n} b_{k}
$$

2. Difference Rule:

$$
\sum_{k=1}^{n}\left(a_{k}-b_{k}\right)=\sum_{k=1}^{n} a_{k}-\sum_{k=1}^{n} b_{k}
$$

3. Constant Multiple Rule:

$$
\sum_{k=1}^{n} c a_{k}=c \cdot \sum_{k=1}^{n} a_{k} \quad(\text { Any number } c)
$$

4. Constant Value Rule:

$$
\sum_{k=1}^{n} c=n \cdot c \quad(c \text { is any constant value. })
$$

Example:

$$
\sum_{k=1}^{n}\left(5 k-k^{3}\right)=5 \sum_{k=1}^{n} k-\sum_{k=1}^{n} k^{3}
$$

by rules 1 and 2 .

Theorem

- Sum of first n natural numbers:

$$
\sum_{k=1}^{n} k=\frac{n(n+1)}{2}
$$

- Sum of first n squares:

$$
\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

- Sum of first n cubes:

$$
\sum_{k=1}^{n} k^{3}=\left(\frac{n(n+1)}{2}\right)^{2}
$$

Example continued

We can now compute the area of the region R below the graph of $y=1-x^{2}$ and above the interval $[0,1]$.

Example continued

We can now compute the area of the region R below the graph of $y=1-x^{2}$ and above the interval $[0,1]$.

- Subdivide the interval into n subintervals of width $\Delta x=\frac{1}{n}$: $\left[0, \frac{1}{n}\right],\left[\frac{1}{n}, \frac{2}{n}\right],\left[\frac{2}{n}, \frac{3}{n}\right], \ldots,\left[\frac{n-1}{n}, \frac{n}{n}\right]$.

Example continued

We can now compute the area of the region R below the graph of $y=1-x^{2}$ and above the interval $[0,1]$.

- Subdivide the interval into n subintervals of width $\Delta x=\frac{1}{n}$: $\left[0, \frac{1}{n}\right],\left[\frac{1}{n}, \frac{2}{n}\right],\left[\frac{2}{n}, \frac{3}{n}\right], \ldots,\left[\frac{n-1}{n}, \frac{n}{n}\right]$.
- Use the min rule to choose the points c_{k} : this gives $c_{k}=\frac{k}{n}, k \in \mathbb{N}$ is the rightmost point in the k 'th subinterval.

Example continued

We can now compute the area of the region R below the graph of $y=1-x^{2}$ and above the interval $[0,1]$.

- Subdivide the interval into n subintervals of width $\Delta x=\frac{1}{n}$: $\left[0, \frac{1}{n}\right],\left[\frac{1}{n}, \frac{2}{n}\right],\left[\frac{2}{n}, \frac{3}{n}\right], \ldots,\left[\frac{n-1}{n}, \frac{n}{n}\right]$.
- Use the min rule to choose the points c_{k} : this gives $c_{k}=\frac{k}{n}, k \in \mathbb{N}$ is the rightmost point in the k 'th subinterval.
- The lower sum is
$f\left(\frac{1}{n}\right) \frac{1}{n}+f\left(\frac{2}{n}\right) \frac{1}{n}+\ldots+f\left(\frac{n}{n}\right) \frac{1}{n}=\sum_{k=1}^{n} f\left(\frac{k}{n}\right) \frac{1}{n}=\frac{2}{3}-\frac{1}{2 n}-\frac{1}{6 n^{2}}$.
Hence the area of R is at least $\frac{2}{3}-\frac{1}{2 n}-\frac{1}{6 n^{2}}$.

Example continued

We can now compute the area of the region R below the graph of $y=1-x^{2}$ and above the interval $[0,1]$.

- Subdivide the interval into n subintervals of width $\Delta x=\frac{1}{n}$: $\left[0, \frac{1}{n}\right],\left[\frac{1}{n}, \frac{2}{n}\right],\left[\frac{2}{n}, \frac{3}{n}\right], \ldots,\left[\frac{n-1}{n}, \frac{n}{n}\right]$.
- Use the min rule to choose the points c_{k} : this gives $c_{k}=\frac{k}{n}, k \in \mathbb{N}$ is the rightmost point in the k 'th subinterval.
- The lower sum is $f\left(\frac{1}{n}\right) \frac{1}{n}+f\left(\frac{2}{n}\right) \frac{1}{n}+\ldots+f\left(\frac{n}{n}\right) \frac{1}{n}=\sum_{k=1}^{n} f\left(\frac{k}{n}\right) \frac{1}{n}=\frac{2}{3}-\frac{1}{2 n}-\frac{1}{6 n^{2}}$. Hence the area of R is at least $\frac{2}{3}-\frac{1}{2 n}-\frac{1}{6 n^{2}}$.
- A similar calculation shows that the upper sum is $\frac{2}{3}+\frac{1}{2 n}-\frac{1}{6 n^{2}}$ and hence the area of R is at most $\frac{2}{3}-\frac{1}{2 n}-\frac{1}{6 n^{2}}$.

Example continued

We can now compute the area of the region R below the graph of $y=1-x^{2}$ and above the interval $[0,1]$.

- Subdivide the interval into n subintervals of width $\Delta x=\frac{1}{n}$: $\left[0, \frac{1}{n}\right],\left[\frac{1}{n}, \frac{2}{n}\right],\left[\frac{2}{n}, \frac{3}{n}\right], \ldots,\left[\frac{n-1}{n}, \frac{n}{n}\right]$.
- Use the min rule to choose the points c_{k} : this gives $c_{k}=\frac{k}{n}, k \in \mathbb{N}$ is the rightmost point in the k 'th subinterval.
- The lower sum is
$f\left(\frac{1}{n}\right) \frac{1}{n}+f\left(\frac{2}{n}\right) \frac{1}{n}+\ldots+f\left(\frac{n}{n}\right) \frac{1}{n}=\sum_{k=1}^{n} f\left(\frac{k}{n}\right) \frac{1}{n}=\frac{2}{3}-\frac{1}{2 n}-\frac{1}{6 n^{2}}$.
Hence the area of R is at least $\frac{2}{3}-\frac{1}{2 n}-\frac{1}{6 n^{2}}$.
- A similar calculation shows that the upper sum is $\frac{2}{3}+\frac{1}{2 n}-\frac{1}{6 n^{2}}$ and hence the area of R is at most $\frac{2}{3}-\frac{1}{2 n}-\frac{1}{6 n^{2}}$.
- As $n \rightarrow \infty$, both sums converge to $\frac{2}{3}$. Therefore, the area of R is $\frac{2}{3}$.

Example continued

We can now compute the area of the region R below the graph of $y=1-x^{2}$ and above the interval $[0,1]$.

- Subdivide the interval into n subintervals of width $\Delta x=\frac{1}{n}$: $\left[0, \frac{1}{n}\right],\left[\frac{1}{n}, \frac{2}{n}\right],\left[\frac{2}{n}, \frac{3}{n}\right], \ldots,\left[\frac{n-1}{n}, \frac{n}{n}\right]$.
- Use the min rule to choose the points c_{k} : this gives $c_{k}=\frac{k}{n}, k \in \mathbb{N}$ is the rightmost point in the k^{\prime} th subinterval.
- The lower sum is
$f\left(\frac{1}{n}\right) \frac{1}{n}+f\left(\frac{2}{n}\right) \frac{1}{n}+\ldots+f\left(\frac{n}{n}\right) \frac{1}{n}=\sum_{k=1}^{n} f\left(\frac{k}{n}\right) \frac{1}{n}=\frac{2}{3}-\frac{1}{2 n}-\frac{1}{6 n^{2}}$. Hence the area of R is at least $\frac{2}{3}-\frac{1}{2 n}-\frac{1}{6 n^{2}}$.
- A similar calculation shows that the upper sum is $\frac{2}{3}+\frac{1}{2 n}-\frac{1}{6 n^{2}}$ and hence the area of R is at most $\frac{2}{3}-\frac{1}{2 n}-\frac{1}{6 n^{2}}$.
- As $n \rightarrow \infty$, both sums converge to $\frac{2}{3}$. Therefore, the area of R is $\frac{2}{3}$.

Note that any other choice of c_{k} would give the same limit (since its sum must lie between the upper and lower sums).

Riemann sums and the indefinite integral

Lecture continued on whiteboard - see online lecture notes.

