MTH4100 Calculus I

Bill Jackson School of Mathematical Sciences QMUL

Week 9, Semester 1, 2012

Image: A math a math

.∃ . . .

If f(a) = g(a) = 0, then f(a)/g(a) = 0/0 is a meaningless expression, called an *indeterminate form*.

(4 同) (4 日) (4 日)

If f(a) = g(a) = 0, then f(a)/g(a) = 0/0 is a meaningless expression, called an *indeterminate form*. In this case $\lim_{x \to a} \frac{f(x)}{g(x)}$ cannot be found by simply substituting x = a.

If f(a) = g(a) = 0, then f(a)/g(a) = 0/0 is a meaningless expression, called an *indeterminate form*. In this case $\lim_{x \to a} \frac{f(x)}{g(x)}$ cannot be found by simply substituting x = a.

L'Hôpital's Rule gives us a method to calculate this limit if f and g are both differentiable at x = a.

If f(a) = g(a) = 0, then f(a)/g(a) = 0/0 is a meaningless expression, called an *indeterminate form*. In this case $\lim_{x \to a} \frac{f(x)}{g(x)}$ cannot be found by simply substituting

x = a.

L'Hôpital's Rule gives us a method to calculate this limit if f and g are both differentiable at x = a.

Theorem (L'Hôpital's Rule - Weak Form)

Suppose that f(a) = g(a) = 0, that f'(a) and g'(a) both exist, and that $g'(a) \neq 0$. Then

$$\lim_{x\to a}\frac{f(x)}{g(x)}=\frac{f'(a)}{g'(a)}.$$

▶ < @ ▶ < 글 ▶ < 글 ▶

If f(a) = g(a) = 0, then f(a)/g(a) = 0/0 is a meaningless expression, called an *indeterminate form*. In this case $\lim_{x \to a} \frac{f(x)}{g(x)}$ cannot be found by simply substituting

x = a.

L'Hôpital's Rule gives us a method to calculate this limit if f and g are both differentiable at x = a.

Theorem (L'Hôpital's Rule - Weak Form)

Suppose that f(a) = g(a) = 0, that f'(a) and g'(a) both exist, and that $g'(a) \neq 0$. Then

$$\lim_{x\to a}\frac{f(x)}{g(x)}=\frac{f'(a)}{g'(a)}.$$

・ロン ・四 と ・ ヨ と ・ ヨ と

Example: Determine $\lim_{x \to 0} \frac{5x - \sin x}{x}$

Always check f(a) = g(a) = 0, before you try to use l'Hôpital to calculate $\lim_{x\to a} \frac{f(x)}{g(x)}$. Otherwise you may get a wrong answer.

・ 戸 ト ・ ヨ ト ・

Always check f(a) = g(a) = 0, before you try to use l'Hôpital to calculate $\lim_{x\to a} \frac{f(x)}{g(x)}$. Otherwise you may get a wrong answer. **Example:** $\lim_{x\to 0} \frac{1+\sin x}{1-x}$. Sometimes we have to use l'Hôpital's rule recursively. To do this we need a stronger version of the rule:

(4 同) (4 日) (4 日)

Sometimes we have to use l'Hôpital's rule recursively. To do this we need a stronger version of the rule:

Theorem (L'Hôpital's Rule - Strong Form))

Suppose that f(a) = g(a) = 0, that f and g are differentiable on an open interval I containing a, and that $g'(x) \neq 0$ on I if $x \neq a$. Then

$$\lim_{x\to a}\frac{f(x)}{g(x)}=\lim_{x\to a}\frac{f'(x)}{g'(x)},$$

assuming that the limit on the right side exists.

- 4 同 1 - 4 三 1 - 4 三 1

Sometimes we have to use l'Hôpital's rule recursively. To do this we need a stronger version of the rule:

Theorem (L'Hôpital's Rule - Strong Form))

Suppose that f(a) = g(a) = 0, that f and g are differentiable on an open interval I containing a, and that $g'(x) \neq 0$ on I if $x \neq a$. Then

$$\lim_{x\to a}\frac{f(x)}{g(x)}=\lim_{x\to a}\frac{f'(x)}{g'(x)},$$

assuming that the limit on the right side exists.

Example: Determine

$$\lim_{x\to 0}\frac{x-\sin x}{x^3}.$$

(D) (A) (A) (A) (A)

L'Hôpital's rule can also be applied to one-sided limits. **Example:**

$$\lim_{x\to 0^+} \frac{\sin x}{x^2}$$

< ∃⇒

L'Hôpital's rule can also be applied to other indeterminate forms such as ∞/∞ , $0\cdot\infty$ and $\infty-\infty$.

< ロ > < 同 > < 三 > < 三 >

L'Hôpital's rule can also be applied to other indeterminate forms such as ∞/∞ , $0\cdot\infty$ and $\infty-\infty$.

$$\infty/\infty : \text{ If } \lim_{x \to a} f(x) = \infty = \lim_{x \to a} g(x) \text{, then use}$$
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.$$
Example: Determine
$$\lim_{x \to \infty} \frac{x - x^2}{x^2 + 7x}.$$

L'Hôpital's rule can also be applied to other indeterminate forms such as ∞/∞ , $0\cdot\infty$ and $\infty-\infty$.

$$\infty/\infty : \text{ If } \lim_{x \to a} f(x) = \infty = \lim_{x \to a} g(x), \text{ then use} \\ \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.$$

Example: Determine $\lim_{x \to \infty} \frac{x - x^2}{x^2 + 7x}.$

$$\infty \cdot \mathbf{0} : \text{ If } \lim_{x \to a} f(x) = \infty \text{ and } \lim_{x \to a} g(x), \text{ then use} \\ \lim_{x \to a} (f(x)g(x)) = \lim_{x \to a} \frac{g(x)}{1/f(x)}.$$

Example: Determine $\lim_{x \to \infty} x \sin(1/x).$

向下 イヨト イヨト

L'Hôpital's rule can also be applied to other indeterminate forms such as ∞/∞ , $0 \cdot \infty$ and $\infty - \infty$.

$$\infty/\infty : \text{ If } \lim_{x \to a} f(x) = \infty = \lim_{x \to a} g(x), \text{ then use} \\ \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.$$

Example: Determine $\lim_{x \to \infty} \frac{x - x^2}{x^2 + 7x}.$

$$\infty \cdot \mathbf{0} : \text{ If } \lim_{x \to a} f(x) = \infty \text{ and } \lim_{x \to a} g(x), \text{ then use} \\ \lim_{x \to a} (f(x)g(x)) = \lim_{x \to a} \frac{g(x)}{1/f(x)}.$$

Example: Determine $\lim_{x \to \infty} x \sin(1/x).$

 $\infty - \infty$: Try to gather terms so we can use the standard form of L'Hôpital rule: **Example:** Determine $\lim_{x\to 0} \left(\frac{1}{\sin x} - \frac{1}{x}\right)$.

Idea: Given a function f, find a function F such that F' = f.

・ロン ・回 と ・ ヨ と ・ ヨ と

E

Idea: Given a function f, find a function F such that F' = f.

DEFINITION Antiderivative

A function F is an **antiderivative** of f on an interval I if F'(x) = f(x) for all x in I.

(日) (四) (E) (E) (E) (E)

Idea: Given a function f, find a function F such that F' = f.

DEFINITION Antiderivative

A function F is an **antiderivative** of f on an interval I if F'(x) = f(x) for all x in I.

Examples: (1) f(x) = 2x (2) $h(x) = \sin x$.

臣

It is easy to see that if F(x) is an antiderivative of f(x) then F(x) + C will be an antiderivative of f(x) for any constant $C \in \mathbb{R}$. It is easy to see that if F(x) is an antiderivative of f(x) then F(x) + C will be an antiderivative of f(x) for any constant $C \in \mathbb{R}$.

Furthermore, if G(x) is any other antiderivative of f(x) then we have F'(x) = f(x) = G'(x) and the second corollary to the Mean Value Theorem tells us that G(x) = F(x) + C for some constant $C \in \mathbb{R}$. This gives:

General antiderivatives

It is easy to see that if F(x) is an antiderivative of f(x) then F(x) + C will be an antiderivative of f(x) for any constant $C \in \mathbb{R}$.

Furthermore, if G(x) is any other antiderivative of f(x) then we have F'(x) = f(x) = G'(x) and the second corollary to the Mean Value Theorem tells us that G(x) = F(x) + C for some constant $C \in \mathbb{R}$. This gives:

If F is an antiderivative of f on an interval I, then the most general antiderivative of f on I is

$$F(x) + C$$

where C is an arbitrary constant.

< ロ > < 同 > < 三 > < 三 >

TABLE 4.2 Antiderivative formulas		
	Function	General antiderivative
1.	x^n	$\frac{x^{n+1}}{n+1} + C, n \neq -1, n \text{ rational}$
2.	sin <i>kx</i>	$-\frac{\cos kx}{k} + C, k \text{ a constant}, \ k \neq 0$
3.	cos kx	$\frac{\sin kx}{k} + C, k \text{ a constant, } k \neq 0$
4.	$\sec^2 x$	$\tan x + C$
5.	$\csc^2 x$	$-\cot x + C$
6.	$\sec x \tan x$	$\sec x + C$
7.	$\csc x \cot x$	$-\csc x + C$

These formula can easily be verified by showing that the derivative of each antiderivative is equal to the given function,

Lemma

Suppose f(x), g(x) are functions with antiderivatives F(x) and G(x), and $k \in \mathbb{R}$. Then:

- kf(x) has general antiderivative kF(x) + C;
- f(x) + g(x) has general antiderivative F(x) + G(x) + C;

for an arbitrary constant $C \in \mathbb{R}$.

伺 ト イヨト イヨト

Lemma

Suppose f(x), g(x) are functions with antiderivatives F(x) and G(x), and $k \in \mathbb{R}$. Then:

- kf(x) has general antiderivative kF(x) + C;
- f(x) + g(x) has general antiderivative F(x) + G(x) + C;

for an arbitrary constant $C \in \mathbb{R}$.

Example: Find the general antiderivative of $h(x) = \frac{5}{\sqrt{x}} + \sin 3x$.

A (10) × (10)

A special symbol is used to denote the collection of all antiderivatives of f:

DEFINITION Indefinite Integral, Integrand

The set of all antiderivatives of f is the **indefinite integral** of f with respect to x, denoted by

$$\int f(x) \, dx$$

The symbol \int is an **integral sign**. The function f is the **integrand** of the integral, and x is the **variable of integration**.

・ロン ・四 と ・ ヨ と ・ ヨ と

A special symbol is used to denote the collection of all antiderivatives of f:

DEFINITION Indefinite Integral, Integrand

The set of all antiderivatives of f is the **indefinite integral** of f with respect to x, denoted by

$$\int f(x) \, dx$$

The symbol \int is an **integral sign**. The function f is the **integrand** of the integral, and x is the **variable of integration**.

Examples:

$$\int 4x \, dx = 2x^2 + C$$
$$\int \cos x \, dx = \sin x + C$$

< 日 > < 国 > < 国 > < 国 > < 国 > <