MTH4100 Calculus I

Bill Jackson
School of Mathematical Sciences QMUL

Week 9, Semester 1, 2012

L'Hôpital's Rule and Indeterminate Forms

If $f(a)=g(a)=0$, then $f(a) / g(a)=0 / 0$ is a meaningless expression, called an indeterminate form.

L'Hôpital's Rule and Indeterminate Forms

If $f(a)=g(a)=0$, then $f(a) / g(a)=0 / 0$ is a meaningless expression, called an indeterminate form.
In this case $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ cannot be found by simply substituting $x=a$.

L'Hôpital's Rule and Indeterminate Forms

If $f(a)=g(a)=0$, then $f(a) / g(a)=0 / 0$ is a meaningless expression, called an indeterminate form.
In this case $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ cannot be found by simply substituting $x=a$.
L'Hôpital's Rule gives us a method to calculate this limit if f and g are both differentiable at $x=a$.

L'Hôpital's Rule and Indeterminate Forms

If $f(a)=g(a)=0$, then $f(a) / g(a)=0 / 0$ is a meaningless
expression, called an indeterminate form.
In this case $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ cannot be found by simply substituting $x=a$.
L'Hôpital's Rule gives us a method to calculate this limit if f and g are both differentiable at $x=a$.

Theorem (L'Hôpital's Rule - Weak Form)

Suppose that $f(a)=g(a)=0$, that $f^{\prime}(a)$ and $g^{\prime}(a)$ both exist, and that $g^{\prime}(a) \neq 0$. Then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{f^{\prime}(a)}{g^{\prime}(a)}
$$

L'Hôpital's Rule and Indeterminate Forms

If $f(a)=g(a)=0$, then $f(a) / g(a)=0 / 0$ is a meaningless expression, called an indeterminate form.
In this case $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ cannot be found by simply substituting $x=a$.
L'Hôpital's Rule gives us a method to calculate this limit if f and g are both differentiable at $x=a$.

Theorem (L'Hôpital's Rule - Weak Form)

Suppose that $f(a)=g(a)=0$, that $f^{\prime}(a)$ and $g^{\prime}(a)$ both exist, and that $g^{\prime}(a) \neq 0$. Then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{f^{\prime}(a)}{g^{\prime}(a)}
$$

Example: Determine $\lim _{x \rightarrow 0} \frac{5 x-\sin x}{x}$

L'Hôpital's Rule - Warning

Always check $f(a)=g(a)=0$, before you try to use l'Hôpital to calculate $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$. Otherwise you may get a wrong answer.

L'Hôpital's Rule - Warning

Always check $f(a)=g(a)=0$, before you try to use l'Hôpital to calculate $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$. Otherwise you may get a wrong answer.
Example: $\lim _{x \rightarrow 0} \frac{1+\sin x}{1-x}$.

L'Hôpital's Rule - Strong Form

Sometimes we have to use l'Hôpital's rule recursively. To do this we need a stronger version of the rule:

L'Hôpital's Rule - Strong Form

Sometimes we have to use l'Hôpital's rule recursively. To do this we need a stronger version of the rule:

Theorem (L'Hôpital's Rule - Strong Form))

Suppose that $f(a)=g(a)=0$, that f and g are differentiable on an open interval l containing a, and that $g^{\prime}(x) \neq 0$ on l if $x \neq a$. Then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)},
$$

assuming that the limit on the right side exists.

L'Hôpital's Rule - Strong Form

Sometimes we have to use l'Hôpital's rule recursively. To do this we need a stronger version of the rule:

Theorem (L'Hôpital's Rule - Strong Form))

Suppose that $f(a)=g(a)=0$, that f and g are differentiable on an open interval l containing a, and that $g^{\prime}(x) \neq 0$ on I if $x \neq a$. Then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)},
$$

assuming that the limit on the right side exists.
Example: Determine

$$
\lim _{x \rightarrow 0} \frac{x-\sin x}{x^{3}}
$$

One-sided limits

L'Hôpital's rule can also be applied to one-sided limits. Example:

$$
\lim _{x \rightarrow 0^{+}} \frac{\sin x}{x^{2}}
$$

Other indeterminate forms

L'Hôpital's rule can also be applied to other indeterminate forms such as $\infty / \infty, 0 \cdot \infty$ and $\infty-\infty$.

Other indeterminate forms

L'Hôpital's rule can also be applied to other indeterminate forms such as $\infty / \infty, 0 \cdot \infty$ and $\infty-\infty$.
∞ / ∞ : If $\lim _{x \rightarrow a} f(x)=\infty=\lim _{x \rightarrow a} g(x)$, then use $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$.
Example: Determine $\lim _{x \rightarrow \infty} \frac{x-x^{2}}{x^{2}+7 x}$.

Other indeterminate forms

L'Hôpital's rule can also be applied to other indeterminate forms such as $\infty / \infty, 0 \cdot \infty$ and $\infty-\infty$.
∞ / ∞ : If $\lim _{x \rightarrow a} f(x)=\infty=\lim _{x \rightarrow a} g(x)$, then use $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$.
Example: Determine $\lim _{x \rightarrow \infty} \frac{x-x^{2}}{x^{2}+7 x}$.
$\infty \cdot 0$: If $\lim _{x \rightarrow a} f(x)=\infty$ and $\lim _{x \rightarrow a} g(x)$, then use
$\lim _{x \rightarrow a}(f(x) g(x))=\lim _{x \rightarrow a} \frac{g(x)}{1 / f(x)}$.
Example: Determine $\lim _{x \rightarrow \infty} x \sin (1 / x)$.

Other indeterminate forms

L'Hôpital's rule can also be applied to other indeterminate forms such as $\infty / \infty, 0 \cdot \infty$ and $\infty-\infty$.
∞ / ∞ : If $\lim _{x \rightarrow a} f(x)=\infty=\lim _{x \rightarrow a} g(x)$, then use $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$.
Example: Determine $\lim _{x \rightarrow \infty} \frac{x-x^{2}}{x^{2}+7 x}$.
$\infty \cdot 0$: If $\lim _{x \rightarrow a} f(x)=\infty$ and $\lim _{x \rightarrow a} g(x)$, then use
$\lim _{x \rightarrow a}(f(x) g(x))=\lim _{x \rightarrow a} \frac{g(x)}{1 / f(x)}$.
Example: Determine $\lim _{x \rightarrow \infty} x \sin (1 / x)$.
$\infty-\infty$: Try to gather terms so we can use the standard form of L'Hôpital rule:
Example: Determine $\lim _{x \rightarrow 0}\left(\frac{1}{\sin x}-\frac{1}{x}\right)$.

Antiderivatives

Idea: Given a function f, find a function F such that $F^{\prime}=f$.

Antiderivatives

Idea: Given a function f, find a function F such that $F^{\prime}=f$.

DEFINITION Antiderivative

A function F is an antiderivative of f on an interval I if $F^{\prime}(x)=f(x)$ for all x in I.

Antiderivatives

Idea: Given a function f, find a function F such that $F^{\prime}=f$.

DEFINITION Antiderivative

A function F is an antiderivative of f on an interval I if $F^{\prime}(x)=f(x)$ for all x in I.

Examples: (1) $f(x)=2 x(2) h(x)=\sin x$.

General antiderivatives

It is easy to see that if $F(x)$ is an antiderivative of $f(x)$ then $F(x)+C$ will be an antiderivative of $f(x)$ for any constant $C \in \mathbb{R}$.

General antiderivatives

It is easy to see that if $F(x)$ is an antiderivative of $f(x)$ then $F(x)+C$ will be an antiderivative of $f(x)$ for any constant $C \in \mathbb{R}$.

Furthermore, if $G(x)$ is any other antiderivative of $f(x)$ then we have $F^{\prime}(x)=f(x)=G^{\prime}(x)$ and the second corollary to the Mean Value Theorem tells us that $G(x)=F(x)+C$ for some constant $C \in \mathbb{R}$. This gives:

General antiderivatives

It is easy to see that if $F(x)$ is an antiderivative of $f(x)$ then $F(x)+C$ will be an antiderivative of $f(x)$ for any constant $C \in \mathbb{R}$.

Furthermore, if $G(x)$ is any other antiderivative of $f(x)$ then we have $F^{\prime}(x)=f(x)=G^{\prime}(x)$ and the second corollary to the Mean Value Theorem tells us that $G(x)=F(x)+C$ for some constant $C \in \mathbb{R}$. This gives:

If F is an antiderivative of f on an interval I, then the most general antiderivative of f on I is

$$
F(x)+C
$$

where C is an arbitrary constant.

TABLE 4.2 Antiderivative formulas

Function

1. x^{n}
2. $\quad \sin k x \quad-\frac{\cos k x}{k}+C, \quad k$ a constant, $k \neq 0$
3. $\cos k x \quad \frac{\sin k x}{k}+C, \quad k$ a constant, $k \neq 0$
4. $\sec ^{2} x \quad \tan x+C$
5. $\csc ^{2} x$
$-\cot x+C$
$\sec x+C$
6. $\csc x \cot x$

These formula can easily be verified by showing that the derivative of each antiderivative is equal to the given function.

Antiderivative linearity rules

Lemma

Suppose $f(x), g(x)$ are functions with antiderivatives $F(x)$ and $G(x)$, and $k \in \mathbb{R}$. Then:

- $k f(x)$ has general antiderivative $k F(x)+C$;
- $f(x)+g(x)$ has general antiderivative $F(x)+G(x)+C$; for an arbitrary constant $C \in \mathbb{R}$.

Antiderivative linearity rules

Lemma

Suppose $f(x), g(x)$ are functions with antiderivatives $F(x)$ and $G(x)$, and $k \in \mathbb{R}$. Then:

- $k f(x)$ has general antiderivative $k F(x)+C$;
- $f(x)+g(x)$ has general antiderivative $F(x)+G(x)+C$; for an arbitrary constant $C \in \mathbb{R}$.
Example: Find the general antiderivative of $h(x)=\frac{5}{\sqrt{x}}+\sin 3 x$.

Notation for antiderivatives

A special symbol is used to denote the collection of all antiderivatives of f :

DEFINITION Indefinite Integral, Integrand

The set of all antiderivatives of f is the indefinite integral of f with respect to x, denoted by

$$
\int f(x) d x .
$$

The symbol \int is an integral sign. The function f is the integrand of the integral, and x is the variable of integration.

Notation for antiderivatives

A special symbol is used to denote the collection of all antiderivatives of f :

DEFINITION Indefinite Integral, Integrand

The set of all antiderivatives of f is the indefinite integral of f with respect to x, denoted by

$$
\int f(x) d x .
$$

The symbol \int is an integral sign. The function f is the integrand of the integral, and x is the variable of integration.

Examples:

$\int 4 x d x=2 x^{2}+C$
$\int \cos x d x=\sin x+C$

