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Points of inflection
We have seen that the graph of y = x3 changes concavity at the point (0, 0). Such a point
is covered by the following definition.

The condition that the graph of the function has a tangent line at a point is more general
than saying that the function is differentiable at the point since it allows the tangent line
to be vertical (and hence the derivative to be ‘infinite’).

Example Consider y = x1/3. We have y′ = 1
3
x−

2

3 and y′′ = −2
9
x−

5

3 . Hence y′′ does not
exist at x = 0. On the other hand limx→0− y′′(x) = ∞ and limx→0+ y′′(x) = −∞. Thus y′′

changes sign as we pass through x = 0 and we do have a point of inflection at x = 0 (even
though y′′(0) does not exist).

Suppose f is a function. At a point of inflection (c, f(c)) of f we have f ′′(x) > 0 on one
side of c, f ′′(x) < 0 on the other side of c, and either f ′′(c) = 0 or f ′′ is undefined at c itself.
Thus, if f ′′(c) exists, then (c, f(c)) is a point of inflection if and only if f ′′(c) = 0 AND f ′

has a local maximum or minimum at x = c.
Example: Consider f(x) = x3 − 3x. We have f ′(x) = 3x2 − 3 and f ′′(x) = 6x. Since
f ′′(0) = 0 and f ′(0) = −3 is a local minimum of f ′, the graph of f has a point of inflection
at x = 0.

Note, however, that we can have f ′′(c) = 0 without (c, f(c)) being a point of inflection
(when f ′ does not change sign at x = c).
Example Consider y = x4. We have y′ = 4x3 and y′′ = 12x2. Thus y′′(0) = 0. BUT y′′

does not change sign at x = 0. Hence there is no inflection point at x = 0.
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If f is a function, c is a critical point of f and f is twice differentiable at c then we can use
the second derivative f ′′(c) to test whether f(c) is a local extremum of f :

Theorem 1 (Second derivative test for local extrema) Suppose f is a function, f ′(c) =
0, and f ′′ is continuous on some open interval which contains c.

1. If f ′′(c) < 0 then f has a local maximum at c.

2. If f ′′(c) > 0 then f has a local minimum at c.

3. If f ′′(c) = 0 then the test fails, f can have either a local maximum, a local minimum,

or a point of inflection at c.

Proof Suppose f ′′(c) < 0. Then f ′ is decreasing at c. Since f ′(c) = 0, f ′ must change sign
from + to − as we pass through c. Hence f has a local maximum at c. A similar proof
holds if f ′′(c) > 0.

If f ′′(c) = 0 then either the sign of f ′ changes as we pass through c and f has a local
extramum at c (e.g. f(x) = x4), or the sign of f ′ does not change as we pass through c and
f has a point of inflection at c (e.g. f(x) = x3). •
Note. In case (3) we can use the first derivative test to determine if f has a local extremum
or a point of inflection at c.

Graph Drawing: Strategy for Graphing y = f(x)

Step 1 Identify the natural domain of f and find any symmetries the graph may have.

Step 2 Determine f ′ and f ′′.

Step 3 Find the critical points of f and determine the functions behavior at each one.

Step 4 Determine where f is increasing or decreasing.

Step 5 Find the points of inflection, if any occur, and determine where the graph is concave
up or concave down.

Step 6 Investigate the behavior of f(x) as x → ±∞ and identify any asymptotes.

Step 7 Plot key points such as the intercepts of the graph on the axes and the points found
in Steps 3-5, then sketch the graph.
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Example: Sketch the graph of f(x) =
(x+ 1)2

1 + x2
.

Step 1 The natural domain of f is (−∞,∞). There are no symmetries about any axis.

Step 2

f ′(x) =
2(1− x2)

(1 + x2)2

f ′′(x) ==
4x(x2 − 3)

(1 + x2)3

Step 3 f ′(x) exists for all x ∈ (−∞,∞) and f(x) = 0 when x = ±1, so x = −1 and x = 1 are
the only critical points of f . We have f ′′(−1) = 1 > 0 and f ′′(1) = −1 < 0 so (−1, 0)
is a local minimum and (1, 2) a local maximum.

Step 4 We have: f ′(x) < 0 for x ∈ (−∞,−1) so the curve is decreasing on (−∞,−1);
f ′(x) > 0 for x ∈ (−1, 1) so the curve is increasing on (−1, 1); f ′(x) < 0 for x ∈ (1,∞)
so the curve is decreasing on (1,∞);

Step 5 f ′′(x) = 0 when x = ±
√
3 or 0; f ′′ < 0 on (−∞,−

√
3) so graph is concave down;

f ′′ > 0 on (−
√
3, 0) so graph is concave up; f ′′ < 0 on (0,

√
3) so graph is concave

down; f ′′ > 0 on (
√
3,∞) so graph is concave up. Each point is a point of inflection.

Step 6

f(x) =
(x+ 1)2

1 + x2
=

x2 + 2x+ 1

1 + x2
=

1 + 2/x+ 1/x2

1/x2 + 1

so limx→−∞ f(x) = 1 = limx→∞ f(x) so y = 1 is a horizontal asymptote. There are no
vertical asymptotes.

Step 3 f(0) = 1 and f(x) = 0 when x = −1 so the graph meets the y-axis at y = 1 and the
x-axis at x = −1. We can now sketch the curve:
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Summary: Learning about functions from derivatives

L’Hôpital’s Rule and Indeterminate Forms

If f(a) = g(a) = 0, f(a)/g(a) = 0/0 is a meaningless expression, called an indeterminate

form. In this case lim
x→a

f(x)

g(x)
cannot be found by simply substituting x = a. L’Hôpital’s Rule

gives us a method to calculate this limit if f and g are both differentiable at x = a.

Theorem 2 (L’Hôpital’s Rule - Weak Form)) Suppose that f(a) = g(a) = 0, that

f ′(a) and g′(a) both exist, and that g′(a) 6= 0. Then

lim
x→a

f(x)

g(x)
=

f ′(a)

g′(a)
.
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Proof We have

f ′(a)

g′(a)
=

limx→a
f(x)−f(a)

x−a

limx→a
g(x)−g(a)

x−a

(definition of f ′,g′)

= lim
x→a

(

f(x)−f(a)
x−a

g(x)−g(a)
x−a

)

(limit laws)

= lim
x→a

f(x)− f(a)

g(x)− g(a)

= lim
x→a

f(x)

g(x)
(since f(a) = 0 = g(a))

•
Example: lim

x→0

5x− sin x

x
=

5− cos 0

1
= 4.

WARNING: Always check for “0/0”, i.e., f(a) = g(a) = 0, before using l’Hôpital. Other-
wise you may get a wrong answer.

Example: We have lim
x→0

1 + sin x

1− x
=

1

1
= 1 by direct substitution. BUT if we tried to use

l’Hôpital we would get lim
x→0

1 + sin x

1− x
=

cos 0

−1
= −1.

Sometimes we have to use l’Hôpital’s rule more than once. For example if we try to calculate

lim
x→0

x− sin x

x3
by differentiating the numerator and denominator and then substituting x = 0,

we still obtain 0/0. To apply l’Hôpital’s rule again we need a stronger version of the rule:

Theorem 3 (L’Hôpital’s Rule - Strong Form)) Suppose that f(a) = g(a) = 0, that f
and g are differentiable on an open interval I containing a, and that g′(x) 6= 0 on I if x 6= a.
Then

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
,

assuming that the limit on the right side exists.

See textbook Section 7.5 for a proof.

Example: We have

lim
x→0

x− sin x

x3
= lim

x→0

1− cosx

3x2
= lim

x→0

sin x

6x
= lim

x→0

cosx

6
=

1

6
.
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Summary:

Remark: L’Hôpital also applies to one-sided limits.

Example:

lim
x→0+

sin x

x2
= lim

x→0+

cosx

2x
= ∞

and

lim
x→0−

sin x

x2
= lim

x→0−

cosx

2x
= −∞

What about limits involving other indeterminate forms such as ∞/∞, ∞ · 0 or ∞−∞?

∞/∞ : It can be shown that if limx→a f(x) = ∞ = limx→a g(x), then

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
.

So we can use L’Hôpital rule in the same way as for “0/0“.
Example:

lim
x→∞

x− x2

x2 + 7x
= lim

x→∞

1− 2x

2x+ 7
= lim

x→∞

−2

2
= −1

∞ · 0 : Use

lim
x→a

(f(x)g(x)) = lim
x→a

g(x)

1/f(x)

Example:

lim
x→∞

x sin(1/x) = lim
x→∞

sin(1/x)

1/x
= lim

x→∞

(−1/x2) cos(1/x)

−1/x2
= lim

x→∞

cos(1/x) = 1.

∞ − ∞ : Try to gather terms so we can use the standard form of L’Hôpital rule:
Example:

lim
x→0

(

1

sin x
− 1

x

)

= lim
x→0

x− sin x

x sin x
= lim

x→0

1− cosx

sin x+ x cosx
= lim

x→0

sin x

2 cosx− x sin x
= 0
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Antiderivatives

Idea: Given a function f , find a function F such that F ′ = f .

Examples: (1) If f(x) = 2x then we can take F (x) = x2.
(2) If h(x) = sin x then we can take H(x) = − cos x.

It is easy to see that if F (x) is an antiderivative of f(x) then F (x)+C will be an antiderivative
of f(x) for any constant C ∈ R. Furthermore, if G(x) is any other antiderivative of f(x)
then we have F ′(x) = f(x) = G′(x) and the second corollary to the Mean Value Theorem
tells us that G(x) = F (x) + C for any constant C ∈ R. This gives:

Some antiderivative formulas are shown in the following table:
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Examples: (1) f(x) = x4 ⇒ F (x) = x5

5
+ C

(2) h(x) = cos 5x ⇒ H(x) = sin 5x
5

+ C

The following result can easily be verified by differentiating each of the antiderivatives:

Lemma 1 (Antiderivative linearity rules) Suppose f(x), g(x) are functions with an-

tiderivatives F (x) and G(x), and k ∈ R. Then:

• kf(x) has general antiderivative kF (x) + C;

• f(x) + g(x) has general antiderivative F (x) +G(x) + C;

for any constant C ∈ R.

Example: Find the general antiderivative of h(x) =
5√
x
+ sin 3x.

• We have h(x) = 5f(x) + g(x) with f(x) = x−1/2 and g(x) = sin 3x.

• F (x) = 2
√
x+ C1, which satisfies F ′(x) = f(x).

• G(x) = −1
3
cos 3x+ C2, which satisfies G′(x) = g(x).

• Therefore

H(x) = 10
√
x− 1

3
cos 3x+ C , where C = C1 + C2 .

DefinitionWe refer to the general antiderivative, F (x)+C, of f(x) as the indefinite integral
of f(x) and denote it by

∫

f(x)dx .

The symbol
∫

is called an integral sign, the function f is the integrand and the variable x
is the variable of integration.
Examples:

1.
∫

4x dx = 2x2 + C

2.
∫

cosx dx = sin x+ C
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Integration

Estimating areas with finite sums

Example:

How can we compute the area or the shaded region R?

Approximation algorithm

• Subdivide the interval [0, 1] into n subintervals of equal width ∆x = 1
n
.

• Choose a point ck in the k’th subinterval. For example we could use

1. midpoint rule: Choose ck in the middle of the k’th subinterval.

2. max rule: Choose ck such that f(ck)is maximum.

3. min rule: choose ck such that f(ck) is minimum.

• Construct n rectangles with base ∆x and height ck.
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• Approximate the area by calculating the sum f(c1)∆x+ f(c2)∆x+ . . .+ f(cn)∆x.

Note that the area of R will lie between the upper sum i.e the sum we obtain using the max
rule to choose the points ck and the lower sum i.e the sum we obtain using the min rule to
choose the points ck. So we can estimate how close our approximation is to the correct area
by calculating the difference between these two sums.

We can improve our approximation by choosing shorter subintervals i.e. larger values for n:

If these approximations converge to the same limit as n → ∞, no matter how we choose the

points ck, then this limit will be the area of R.
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Finite sums

To handle sums with many terms, we need a more concise notation. Let

n
∑

k=1

ak = a1 + a2 + . . .+ an

where

Examples: (1) f(c1)∆x+ f(c2)∆x+ . . .+ f(cn)∆x =
∑n

k=1 f(ck)∆x

(2)
∑3

k=1(−1)kk = (−1)1 · 1 + (−1)2 · 2 + (−1)3 · 3 = −1 + 2− 3 = −2

(3) 1+ 3+ 5+ 7+ 9 =
∑5

k=1(2k− 1). Note however that the same sum can be expressed in
many ways by changing the index of summation. We have 1+3+5+7+9 =

∑4
n=0(2n+1)

and 1 + 3 + 5 + 7 + 9 =
∑1

x=−3(2x+ 7).

Example:
∑n

k=1(5k − k3) = 5
∑n

k=1 k −
∑n

k=1 k
3 by rules 1 and 2.

Can we calculate these sums?

Theorem 4 • Sum of first n natural numbers:

n
∑

k=1

k =
n(n + 1)

2
.
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• Sum of first n squares:
n
∑

k=1

k2 =
n(n + 1)(2n+ 1)

6
.

• Sum of first n cubes:
n
∑

k=1

k3 =

(

n(n + 1)

2

)2

.

This result can be proved by mathematical induction, see textbook Appendix 2.

Example continued

We can now compute the area of the region R below the graph of y = 1− x2 and above the
interval [0, 1].

• Subdivide the interval into n subintervals of width ∆x = 1
n
:

[

0,
1

n

]

,

[

1

n
,
2

n

]

,

[

2

n
,
3

n

]

, . . . ,

[

n− 1

n
,
n

n

]

.

• Use the min rule to choose the points ck: this gives ck = k
n
, k ∈ N is the rightmost

point in the k’th subinterval.

• The lower sum is

f

(

1

n

)

1

n
+ f

(

2

n

)

1

n
+ . . .+ f

(n

n

) 1

n
=

n
∑

k=1

f

(

k

n

)

1

n

=

n
∑

k=1

(

1−
(

k

n

)2
)

1

n

=

n
∑

k=1

(

1

n
− k2

n3

)

=
1

n

n
∑

k=1

1− 1

n3

n
∑

k=1

k2

=
1

n
n− 1

n3

n(n + 1)(2n+ 1)

6

= 1− 2n2 + 3n+ 1

6n2

=
2

3
− 1

2n
− 1

6n2
.

Hence the area of R is at least 2
3
− 1

2n
− 1

6n2 .

• A similar calculation shows that the upper sum is 2
3
+ 1

2n
− 1

6n2 and hence the area of
R is at most 2

3
− 1

2n
− 1

6n2 .

• As n → ∞, both sums converge to 2
3
. Therefore, the area of R is 2

3
.

Note that any other choice of ck would give the same limit (since the corresponding sum
must lie between the upper and lower sums).
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Riemann Sums and the Definite Integral

Consider a typical continuous function f over an interval [a, b]:

We want to calculate the area above the interval [a, b] and below the curve y = f(x).
We first construct a partition P of the interval [a, b] into n subintervals by choosing n + 1
points x0, x1, . . . , xn between a and b where

a = x0 < x1 < x2 < . . . < xn−1 < xn = b .

The k’th subinterval of P is [xk−1, xk].
Note that the width of this subinterval, ∆xk = xk − xk−1, may vary.
Choose a point ck ∈ [xk−1, xk] and construct the rectangles with base [xk−1, xk] and height
ck:

The resulting sum

SP =

n
∑

k=1

f(ck)∆xk
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is called the Riemann sum for f on [a, b] with respect to the partition P and the choice of

the points ck.
We then choose finer and finer partitions P and consider the limits of the Riemann sums as
the width of the largest subinterval of P goes to zero, for all possible choices of the points

ck. These ideas lead us to the following definition.

Definition Let f be a function defined on a closed interval [a, b]. We say that a real number
J is the definite integral of f over [a, b] if J is the limit of all possible Riemann sums for
f on [a, b] as the width of the largest subinterval in the partition goes to zero. If such a
number J exists we write

J =

∫ b

a

f(x)dx .

We have

Note that it does not matter which letter we use for the variable of integration:

∫ b

a

f(t)dt =

∫ b

a

f(x)dx .


