MTH4100 Calculus I

Bill Jackson
School of Mathematical Sciences QMUL

Week 8, Semester 1, 2012

Extreme values of functions

DEFINITIONS Absolute Maximum, Absolute Minimum

Let f be a function with domain D. Then f has an absolute maximum value on D at a point c if

$$
f(x) \leq f(c) \quad \text { for all } x \text { in } D
$$

and an absolute minimum value on D at c if

$$
f(x) \geq f(c) \quad \text { for all } x \text { in } D
$$

These values are also called absolute extrema, or global extrema.

Extreme Value Theorem

When f is continuous and its domain is a closed interval, the existence of a global maximum and minimum is ensured by:

Theorem (Extreme Value Theorem)

If f is a continous function on a closed interval $[a, b]$, then f has both an absolute maximum value M and an absolute minimum value m. That is, there exists $x_{1}, x_{2} \in[a, b]$ with $f\left(x_{1}\right)=m$, $f\left(x_{2}\right)=M$, and $m \leq f(x) \leq M$ for all $x \in[a, b]$.

Local Maxima and Minima

DEFINITIONS Local Maximum, Local Minimum

A function f has a local maximum value at an interior point c of its domain if

$$
f(x) \leq f(c) \quad \text { for all } x \text { in some open interval containing } c .
$$

A function f has a local minimum value at an interior point c of its domain if $f(x) \geq f(c) \quad$ for all x in some open interval containing c.

These values are also called local extrema.

Local Maxima and Minima - Example

Note: Absolute extrema are automatically local extrema, but the converse need not be true.

Theorem

Suppose that f has a local maximum or minimum value at an interior point c of its domain, and that f is differentiable at c. Then $f^{\prime}(c)=0$.

Theorem

Suppose that f has a local maximum or minimum value at an interior point c of its domain, and that f is differentiable at c. Then $f^{\prime}(c)=0$.

Note that the converse is false!

First Derivative Theorem for Local Extrema

Theorem

Suppose that f has a local maximum or minimum value at an interior point c of its domain, and that f is differentiable at c. Then $f^{\prime}(c)=0$.

Note that the converse is false!
This theorem tells us that the extreme values of a function f can only occur at the following kinds of points:

- interior points of the domain where $f^{\prime}=0$;
- interior points of the domain where f^{\prime} does not exist;
- endpoints of the domain.

Theorem

Suppose that f has a local maximum or minimum value at an interior point c of its domain, and that f is differentiable at c. Then $f^{\prime}(c)=0$.

Note that the converse is false!
This theorem tells us that the extreme values of a function f can only occur at the following kinds of points:

- interior points of the domain where $f^{\prime}=0$;
- interior points of the domain where f^{\prime} does not exist;
- endpoints of the domain.

Interior points of the domain of f where either $f^{\prime}=0$ or f^{\prime} does not exist are called critical points of f.

Finding local extrema

The Extreme Value Theorem tells us that a continuous function f on a bounded closed interval has absolute maximum and minimum values. The First Derivative Theorem for Local Extrema gives us a method to determine these values:

Finding local extrema

The Extreme Value Theorem tells us that a continuous function f on a bounded closed interval has absolute maximum and minimum values. The First Derivative Theorem for Local Extrema gives us a method to determine these values:

Step 1 Determine the citical points of f.
Step 2 Evaluate f at each critical point AND at the end points of the interval.

Step 3 Take the largest and smallest values appearing in Step 2.

Finding local extrema

The Extreme Value Theorem tells us that a continuous function f on a bounded closed interval has absolute maximum and minimum values. The First Derivative Theorem for Local Extrema gives us a method to determine these values:

Step 1 Determine the citical points of f.
Step 2 Evaluate f at each critical point AND at the end points of the interval.

Step 3 Take the largest and smallest values appearing in Step 2.
Examples Find the absolute extrema of:
(a) $f(x)=x^{2}$ on $[-1,1]$
(b) $f(x)=x^{2 / 3}$ on $[-2,3]$.

Rolle's theorem

This result tells us that a function which is continuous on a bounded closed interval and takes the same value at both endpoints of the interval must have at least one critical point in the interval.

Rolle's theorem

This result tells us that a function which is continuous on a bounded closed interval and takes the same value at both endpoints of the interval must have at least one critical point in the interval.

Theorem

Let f be continuous on the closed interval $[a, b]$ and differentiable on the open interval (a, b). If $f(a)=f(b)$ then there exists a $c \in(a, b)$ with $f^{\prime}(c)=0$.

Rolle's theorem

This result tells us that a function which is continuous on a bounded closed interval and takes the same value at both endpoints of the interval must have at least one critical point in the interval.

Theorem

Let f be continuous on the closed interval $[a, b]$ and differentiable on the open interval (a, b). If $f(a)=f(b)$ then there exists a $c \in(a, b)$ with $f^{\prime}(c)=0$.

Rolle's theorem - Note

It is essential that both the hypotheses in Rolle's theorem are fulfilled i.e. f is continuous on $[a, b]$ and differentiable on (a, b) :

Rolle's theorem - Note

It is essential that both the hypotheses in Rolle's theorem are fulfilled i.e. f is continuous on $[a, b]$ and differentiable on (a, b) :

(a) Discontinuous at an endpoint of $[a, b]$

(b) Discontinuous at an interior point of $[a, b]$

(c) Continuous on $[a, b]$ but not differentiable at an interior point

In each case there is no point $c \in(a, b)$ with $f^{\prime}(c)=0$.

Rolle's theorem - Example

Apply Rolle's theorem to $f(x)=\frac{x^{3}}{3}-3 x$ on $[-3,3]$.

Rolle's theorem - Example

Apply Rolle's theorem to $f(x)=\frac{x^{3}}{3}-3 x$ on $[-3,3]$.

This extends Rolle's theorem to the case when $f(a) \neq f(b)$.

Theorem (Mean Value Theorem)

Let $f(x)$ be continuous on $[a, b]$ and differentiable on (a, b). Then there exists a $c \in(a, b)$ with

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

This extends Rolle's theorem to the case when $f(a) \neq f(b)$.

Theorem (Mean Value Theorem)

Let $f(x)$ be continuous on $[a, b]$ and differentiable on (a, b). Then there exists a $c \in(a, b)$ with

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Apply the Mean Value Theorem to the function $f(x)=x^{2}$ defined on the interval $[0,2]$.

Corollaries to the Mean Value Theorem

Corollary (Functions with zero derivatives are constant)
If $f^{\prime}(x)=0$ for all $x \in(a, b)$ then $f(x)=C$ for some constant $C \in \mathbb{R}$.

Corollaries to the Mean Value Theorem

Corollary (Functions with zero derivatives are constant)
If $f^{\prime}(x)=0$ for all $x \in(a, b)$ then $f(x)=C$ for some constant $C \in \mathbb{R}$.

Corollary (Functions with the same derivative differ by a constant) If $f^{\prime}(x)=g^{\prime}(x)$ for all $x \in(a, b)$, then $f(x)=g(x)+C$ for some constant $C \in \mathbb{R}$.

Monotonic Functions

DEFINITIONS Increasing, Decreasing Function

Let f be a function defined on an interval I and let x_{1} and x_{2} be any two points in I.

1. If $f\left(x_{1}\right)<f\left(x_{2}\right)$ whenever $x_{1}<x_{2}$, then f is said to be increasing on I.
2. If $f\left(x_{2}\right)<f\left(x_{1}\right)$ whenever $x_{1}<x_{2}$, then f is said to be decreasing on I.

A function that is increasing or decreasing on I is called monotonic on I.

Monotonic Functions

DEFINITIONS Increasing, Decreasing Function

Let f be a function defined on an interval I and let x_{1} and x_{2} be any two points in I.

1. If $f\left(x_{1}\right)<f\left(x_{2}\right)$ whenever $x_{1}<x_{2}$, then f is said to be increasing on I.
2. If $f\left(x_{2}\right)<f\left(x_{1}\right)$ whenever $x_{1}<x_{2}$, then f is said to be decreasing on I.

A function that is increasing or decreasing on I is called monotonic on I.

Example: $f(x)=x^{2}$ decreases on $(-\infty, 0]$ and increases on $[0, \infty)$. It is monotonic on $(-\infty, 0]$ and on $[0, \infty)$ but not monotonic on $(-\infty, \infty)$.

Theorem

Suppose that f is continuous on $[a, b]$ and differentiable on (a, b). If $f^{\prime}(x)>0$ at each point $x \in(a, b)$, then f is increasing on $[a, b]$. If $f^{\prime}(x)<0$ at each point $x \in(a, b)$, then f is decreasing on $[a, b]$.

Theorem

Suppose that f is continuous on $[a, b]$ and differentiable on (a, b). If $f^{\prime}(x)>0$ at each point $x \in(a, b)$, then f is increasing on $[a, b]$. If $f^{\prime}(x)<0$ at each point $x \in(a, b)$, then f is decreasing on $[a, b]$.

Example: Find the critical points of $f(x)=x^{3}-12 x-5$ and identify the intervals on which f is increasing and decreasing.

First Derivative Test for Local Extrema

Suppose that c is a critical point of a continuous function f, and that f is differentiable at every point in some interval containing c except possibly at c itself. Moving across c from left to right,

1. if f^{\prime} changes from negative to positive at c, then f has a local minimum at c;
2. if f^{\prime} changes from positive to negative at c, then f has a local maximum at c;
3. if f^{\prime} does not change sign at c (that is, f^{\prime} is positive on both sides of c or negative on both sides), then f has no local extremum at c.

First Derivative Test for Local Extrema

Suppose that c is a critical point of a continuous function f, and that f is differentiable at every point in some interval containing c except possibly at c itself. Moving across c from left to right,

1. if f^{\prime} changes from negative to positive at c, then f has a local minimum at c;
2. if f^{\prime} changes from positive to negative at c, then f has a local maximum at c;
3. if f^{\prime} does not change sign at c (that is, f^{\prime} is positive on both sides of c or negative on both sides), then f has no local extremum at c.

Example: Find the critical points of $f(x)=x^{4 / 3}-4 x^{1 / 3}$, identify the intervals on which f is increasing and decreasing, and find the function's extrema.

Concavity

DEFINITION Concave Up, Concave Down

The graph of a differentiable function $y=f(x)$ is
(a) concave up on an open interval I if f^{\prime} is increasing on I
(b) concave down on an open interval I if f^{\prime} is decreasing on I.

Concavity

DEFINITION Concave Up, Concave Down

The graph of a differentiable function $y=f(x)$ is
(a) concave up on an open interval I if f^{\prime} is increasing on I
(b) concave down on an open interval I if f^{\prime} is decreasing on I.

In the literature 'concave up' is often referred to as convex, and 'concave down' is simply called concave.

If f is twice differential on an interval l, the First Derivative Test for Monotonic Functions implies that f^{\prime} increases on I if $f^{\prime \prime}(x)>0$ for all $x \in I$ and decreases if $f^{\prime \prime}(x)<0$ for all $x \in I$. This gives:

The second derivative test for concavity

If f is twice differential on an interval l, the First Derivative Test for Monotonic Functions implies that f^{\prime} increases on I if $f^{\prime \prime}(x)>0$ for all $x \in I$ and decreases if $f^{\prime \prime}(x)<0$ for all $x \in I$. This gives:

The Second Derivative Test for Concavity

Let $y=f(x)$ be twice-differentiable on an interval I.

1. If $f^{\prime \prime}>0$ on I, the graph of f over I is concave up.
2. If $f^{\prime \prime}<0$ on I, the graph of f over I is concave down.

The second derivative test for concavity

If f is twice differential on an interval l, the First Derivative Test for Monotonic Functions implies that f^{\prime} increases on I if $f^{\prime \prime}(x)>0$ for all $x \in I$ and decreases if $f^{\prime \prime}(x)<0$ for all $x \in I$. This gives:

The Second Derivative Test for Concavity

Let $y=f(x)$ be twice-differentiable on an interval I.

1. If $f^{\prime \prime}>0$ on I, the graph of f over I is concave up.
2. If $f^{\prime \prime}<0$ on I, the graph of f over I is concave down.

Example Find the intervals on the real line for which the graphs of the following functions are concave up or concave down:
(1) $y=x^{3}$
(2) $y=x^{2}$

Points of inflection

DEFINITION Point of Inflection

A point where the graph of a function has a tangent line and where the concavity changes is a point of inflection.

Points of inflection

DEFINITION Point of Inflection

A point where the graph of a function has a tangent line and where the concavity changes is a point of inflection.

Examples: $y=x^{3} ; y=x^{3}-3 x$.

DEFINITION Point of Inflection

A point where the graph of a function has a tangent line and where the concavity changes is a point of inflection.

Examples: $y=x^{3} ; y=x^{3}-3 x$.
The condition that the graph of the function has a tangent line at a point of inflection is more general than saying that the function is differentiable at the point since it allows the tangent line to be vertical (and hence the derivative to be 'infinite').

DEFINITION Point of Inflection

A point where the graph of a function has a tangent line and where the concavity changes is a point of inflection.

Examples: $y=x^{3} ; y=x^{3}-3 x$.
The condition that the graph of the function has a tangent line at a point of inflection is more general than saying that the function is differentiable at the point since it allows the tangent line to be vertical (and hence the derivative to be 'infinite'). Example: $y=x^{1 / 3}$.

At a point of inflection $(c, f(c))$ we have $f^{\prime \prime}(x)>0$ on one side of $c, f^{\prime \prime}(x)<0$ on the other side of c, and either $f^{\prime \prime}(c)=0$ or $f^{\prime \prime}$ is undefined at c itself.

At a point of inflection $(c, f(c))$ we have $f^{\prime \prime}(x)>0$ on one side of $c, f^{\prime \prime}(x)<0$ on the other side of c, and either $f^{\prime \prime}(c)=0$ or $f^{\prime \prime}$ is undefined at c itself.
Thus, if $f^{\prime \prime}(c)$ exists, then $(c, f(c))$ is a point of inflection if and only if $f^{\prime \prime}(c)=0$ and f^{\prime} has a local maximum or minimum at $x=c$.

At a point of inflection $(c, f(c))$ we have $f^{\prime \prime}(x)>0$ on one side of $c, f^{\prime \prime}(x)<0$ on the other side of c, and either $f^{\prime \prime}(c)=0$ or $f^{\prime \prime}$ is undefined at c itself.
Thus, if $f^{\prime \prime}(c)$ exists, then $(c, f(c))$ is a point of inflection if and only if $f^{\prime \prime}(c)=0$ and f^{\prime} has a local maximum or minimum at $x=c$.
Example: $y=x^{3}-3 x$.

At a point of inflection $(c, f(c))$ we have $f^{\prime \prime}(x)>0$ on one side of $c, f^{\prime \prime}(x)<0$ on the other side of c, and either $f^{\prime \prime}(c)=0$ or $f^{\prime \prime}$ is undefined at c itself.
Thus, if $f^{\prime \prime}(c)$ exists, then $(c, f(c))$ is a point of inflection if and only if $f^{\prime \prime}(c)=0$ and f^{\prime} has a local maximum or minimum at $x=c$.
Example: $y=x^{3}-3 x$.
Note, however, that we can have $f^{\prime \prime}(c)=0$ WITHOUT $(c, f(c))$ being a point of inflection.

At a point of inflection $(c, f(c))$ we have $f^{\prime \prime}(x)>0$ on one side of $c, f^{\prime \prime}(x)<0$ on the other side of c, and either $f^{\prime \prime}(c)=0$ or $f^{\prime \prime}$ is undefined at c itself.
Thus, if $f^{\prime \prime}(c)$ exists, then $(c, f(c))$ is a point of inflection if and only if $f^{\prime \prime}(c)=0$ and f^{\prime} has a local maximum or minimum at $x=c$.
Example: $y=x^{3}-3 x$.
Note, however, that we can have $f^{\prime \prime}(c)=0$ WITHOUT $(c, f(c))$ being a point of inflection.
Example $y=x^{4}$.

