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Extreme values of functions

These values are also called absolute extrema, or global extrema.
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Extreme Value Theorem

When f is continuous and its domain is a closed interval, the
existence of a global maximum and minimum is ensured by:

Theorem (Extreme Value Theorem)

If f is a continous function on a closed interval [a, b], then f has

both an absolute maximum value M and an absolute minimum

value m. That is, there exists x1, x2 ∈ [a, b] with f (x1) = m,

f (x2) = M, and m ≤ f (x) ≤ M for all x ∈ [a, b].
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Local Maxima and Minima

These values are also called local extrema.
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Local Maxima and Minima - Example

Note: Absolute extrema are automatically local extrema, but the
converse need not be true.
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First Derivative Theorem for Local Extrema

Theorem

Suppose that f has a local maximum or minimum value at an

interior point c of its domain, and that f is differentiable at c.

Then f ′(c) = 0.
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First Derivative Theorem for Local Extrema

Theorem

Suppose that f has a local maximum or minimum value at an

interior point c of its domain, and that f is differentiable at c.

Then f ′(c) = 0.

Note that the converse is false!
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First Derivative Theorem for Local Extrema

Theorem

Suppose that f has a local maximum or minimum value at an

interior point c of its domain, and that f is differentiable at c.

Then f ′(c) = 0.

Note that the converse is false!
This theorem tells us that the extreme values of a function f can
only occur at the following kinds of points:

interior points of the domain where f ′ = 0;

interior points of the domain where f ′ does not exist;

endpoints of the domain.
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First Derivative Theorem for Local Extrema

Theorem

Suppose that f has a local maximum or minimum value at an

interior point c of its domain, and that f is differentiable at c.

Then f ′(c) = 0.

Note that the converse is false!
This theorem tells us that the extreme values of a function f can
only occur at the following kinds of points:

interior points of the domain where f ′ = 0;

interior points of the domain where f ′ does not exist;

endpoints of the domain.

Interior points of the domain of f where either f ′ = 0 or f ′ does
not exist are called critical points of f .
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Finding local extrema

The Extreme Value Theorem tells us that a continuous function f

on a bounded closed interval has absolute maximum and minimum
values. The First Derivative Theorem for Local Extrema gives us a
method to determine these values:
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Finding local extrema

The Extreme Value Theorem tells us that a continuous function f

on a bounded closed interval has absolute maximum and minimum
values. The First Derivative Theorem for Local Extrema gives us a
method to determine these values:

Step 1 Determine the citical points of f .

Step 2 Evaluate f at each critical point AND at the end points of the
interval.

Step 3 Take the largest and smallest values appearing in Step 2.
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Finding local extrema

The Extreme Value Theorem tells us that a continuous function f

on a bounded closed interval has absolute maximum and minimum
values. The First Derivative Theorem for Local Extrema gives us a
method to determine these values:

Step 1 Determine the citical points of f .

Step 2 Evaluate f at each critical point AND at the end points of the
interval.

Step 3 Take the largest and smallest values appearing in Step 2.

Examples Find the absolute extrema of:

(a) f (x) = x2 on [−1, 1]

(b) f (x) = x2/3 on [−2, 3].
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Rolle’s theorem

This result tells us that a function which is continuous on a
bounded closed interval and takes the same value at both
endpoints of the interval must have at least one critical point in
the interval.
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Rolle’s theorem

This result tells us that a function which is continuous on a
bounded closed interval and takes the same value at both
endpoints of the interval must have at least one critical point in
the interval.

Theorem

Let f be continuous on the closed interval [a, b] and differentiable

on the open interval (a, b). If f (a) = f (b) then there exists a

c ∈ (a, b) with f ′(c) = 0.
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Rolle’s theorem

This result tells us that a function which is continuous on a
bounded closed interval and takes the same value at both
endpoints of the interval must have at least one critical point in
the interval.

Theorem

Let f be continuous on the closed interval [a, b] and differentiable

on the open interval (a, b). If f (a) = f (b) then there exists a

c ∈ (a, b) with f ′(c) = 0.
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Rolle’s theorem - Note

It is essential that both the hypotheses in Rolle’s theorem are
fulfilled i.e. f is continuous on [a, b] and differentiable on (a, b):
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Rolle’s theorem - Note

It is essential that both the hypotheses in Rolle’s theorem are
fulfilled i.e. f is continuous on [a, b] and differentiable on (a, b):

In each case there is no point c ∈ (a, b) with f ′(c) = 0.
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Rolle’s theorem - Example

Apply Rolle’s theorem to f (x) = x
3

3
− 3x on [−3, 3].
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Rolle’s theorem - Example

Apply Rolle’s theorem to f (x) = x
3

3
− 3x on [−3, 3].
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The Mean Value Theorem

This extends Rolle’s theorem to the case when f (a) 6= f (b).

Theorem (Mean Value Theorem)

Let f (x) be continuous on [a, b] and differentiable on (a, b). Then
there exists a c ∈ (a, b) with

f ′(c) =
f (b)− f (a)

b − a
.
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The Mean Value Theorem

This extends Rolle’s theorem to the case when f (a) 6= f (b).

Theorem (Mean Value Theorem)

Let f (x) be continuous on [a, b] and differentiable on (a, b). Then
there exists a c ∈ (a, b) with

f ′(c) =
f (b)− f (a)

b − a
.

Apply the Mean Value Theorem to the function f (x) = x2 defined
on the interval [0, 2].
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Corollaries to the Mean Value Theorem

Corollary (Functions with zero derivatives are constant)

If f ′(x) = 0 for all x ∈ (a, b) then f (x) = C for some constant

C ∈ R.
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Corollaries to the Mean Value Theorem

Corollary (Functions with zero derivatives are constant)

If f ′(x) = 0 for all x ∈ (a, b) then f (x) = C for some constant

C ∈ R.

Corollary (Functions with the same derivative differ by a constant)

If f ′(x) = g ′(x) for all x ∈ (a, b), then f (x) = g(x) + C for some

constant C ∈ R.
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Monotonic Functions
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Monotonic Functions

Example: f (x) = x2 decreases on (−∞, 0] and increases on
[0,∞). It is monotonic on (−∞, 0] and on [0,∞) but not
monotonic on (−∞,∞).
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First derivative test for monotonic functions

Theorem

Suppose that f is continuous on [a, b] and differentiable on (a, b).
If f ′(x) > 0 at each point x ∈ (a, b), then f is increasing on [a, b].
If f ′(x) < 0 at each point x ∈ (a, b), then f is decreasing on [a, b].

Bill Jackson Calculus I



First derivative test for monotonic functions

Theorem

Suppose that f is continuous on [a, b] and differentiable on (a, b).
If f ′(x) > 0 at each point x ∈ (a, b), then f is increasing on [a, b].
If f ′(x) < 0 at each point x ∈ (a, b), then f is decreasing on [a, b].

Example: Find the critical points of f (x) = x3 − 12x − 5 and
identify the intervals on which f is increasing and decreasing.
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First derivative test for local extrema

Bill Jackson Calculus I



First derivative test for local extrema

Example: Find the critical points of f (x) = x4/3 − 4x1/3, identify
the intervals on which f is increasing and decreasing, and find the
function’s extrema.
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Concavity
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Concavity

In the literature ‘concave up’ is often referred to as convex, and
‘concave down’ is simply called concave.
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The second derivative test for concavity

If f is twice differential on an interval I , the First Derivative Test
for Monotonic Functions implies that f ′ increases on I if f ′′(x) > 0
for all x ∈ I and decreases if f ′′(x) < 0 for all x ∈ I . This gives:
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The second derivative test for concavity

If f is twice differential on an interval I , the First Derivative Test
for Monotonic Functions implies that f ′ increases on I if f ′′(x) > 0
for all x ∈ I and decreases if f ′′(x) < 0 for all x ∈ I . This gives:
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The second derivative test for concavity

If f is twice differential on an interval I , the First Derivative Test
for Monotonic Functions implies that f ′ increases on I if f ′′(x) > 0
for all x ∈ I and decreases if f ′′(x) < 0 for all x ∈ I . This gives:

Example Find the intervals on the real line for which the graphs of
the following functions are concave up or concave down:
(1) y = x3

(2) y = x2

Bill Jackson Calculus I



Points of inflection
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Points of inflection

Examples: y = x3; y = x3 − 3x .
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Points of inflection

Examples: y = x3; y = x3 − 3x .

The condition that the graph of the function has a tangent line at
a point of inflection is more general than saying that the function
is differentiable at the point since it allows the tangent line to be
vertical (and hence the derivative to be ‘infinite’).
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Points of inflection

Examples: y = x3; y = x3 − 3x .

The condition that the graph of the function has a tangent line at
a point of inflection is more general than saying that the function
is differentiable at the point since it allows the tangent line to be
vertical (and hence the derivative to be ‘infinite’).
Example: y = x1/3.
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Points of inflection

At a point of inflection (c , f (c)) we have f ′′(x) > 0 on one side of
c , f ′′(x) < 0 on the other side of c , and either f ′′(c) = 0 or f ′′ is
undefined at c itself.
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Points of inflection

At a point of inflection (c , f (c)) we have f ′′(x) > 0 on one side of
c , f ′′(x) < 0 on the other side of c , and either f ′′(c) = 0 or f ′′ is
undefined at c itself.
Thus, if f ′′(c) exists, then (c , f (c)) is a point of inflection if and
only if f ′′(c) = 0 and f ′ has a local maximum or minimum at
x = c .
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Points of inflection

At a point of inflection (c , f (c)) we have f ′′(x) > 0 on one side of
c , f ′′(x) < 0 on the other side of c , and either f ′′(c) = 0 or f ′′ is
undefined at c itself.
Thus, if f ′′(c) exists, then (c , f (c)) is a point of inflection if and
only if f ′′(c) = 0 and f ′ has a local maximum or minimum at
x = c .
Example: y = x3 − 3x .
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Points of inflection

At a point of inflection (c , f (c)) we have f ′′(x) > 0 on one side of
c , f ′′(x) < 0 on the other side of c , and either f ′′(c) = 0 or f ′′ is
undefined at c itself.
Thus, if f ′′(c) exists, then (c , f (c)) is a point of inflection if and
only if f ′′(c) = 0 and f ′ has a local maximum or minimum at
x = c .
Example: y = x3 − 3x .

Note, however, that we can have f ′′(c) = 0 WITHOUT (c , f (c))
being a point of inflection.
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Points of inflection

At a point of inflection (c , f (c)) we have f ′′(x) > 0 on one side of
c , f ′′(x) < 0 on the other side of c , and either f ′′(c) = 0 or f ′′ is
undefined at c itself.
Thus, if f ′′(c) exists, then (c , f (c)) is a point of inflection if and
only if f ′′(c) = 0 and f ′ has a local maximum or minimum at
x = c .
Example: y = x3 − 3x .

Note, however, that we can have f ′′(c) = 0 WITHOUT (c , f (c))
being a point of inflection.
Example y = x4.
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