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Extreme values of functions

These values are also called absolute extrema, or global extrema.

Example:

Domain abs. max. abs. min.

(a) (−∞,∞) none 0, at x = 0
(b) [0, 2] 4, at x = 2 0, at x = 0
(c) (0, 2] 4, at x = 2 none
(d) (0, 2) none none

When the domain of f is a closed interval, the existence of a global maximum and minimum
is ensured by:
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Examples:

These values are also called local extrema.
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Note: Absolute extrema are automatically local extrema, but the converse need not be true.
We can find local extreme points for a differential function by using the following result.

Theorem 1 (First Derivative Theorem for Local Extrema) Suppose that f has a lo-
cal maximum or minimum value at an interior point c of its domain, and that f is differ-
entiable at c. Then f ′(c) = 0.

Proof idea: Lets suppose that f(c) is a local maximum - the proof for a local minimum is
similar. We have

f ′(c) = lim
x→c

f(x)− f(c)

x− c

Consider the right and left hand limits separately. Since f(c) is local maximum of c we have
f(x)− f(c) ≤ 0 for all x sufficiently close to c. Thus

f ′(c) = lim
x→c+

f(x)− f(c)

x− c
≤ 0

and

f ′(c) = lim
x→c−

f(x)− f(c)

x− c
≥ 0.

Hence f ′(c) = 0.
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Note: the converse is false! (counterexample?)

Where can a function f possibly have an extreme value according to this theorem?

Answer:

1. at interior points where f ′ = 0

2. at interior points where f ′ is not defined

3. at endpoints of the domain of f .

Points at which 1 or 2 occur are combined in the following definition:

The Extreme Value Theorem tells us that a continuous function f on a bounded closed
interval has absolute maximum and minimum values. The First Derivative Theorem for
Local Extrema gives us a method to determine these values:

Step 1 Determine the citical points of f .

Step 2 Evaluate f at each critical point AND at the end points of the interval.

Step 3 Take the largest and smallest values appearing in Step 2.

Examples: (1) Find the absolute extrema of f(x) = x2 on [−1, 1].

• f is differentiable on [−1, 1] with f ′(x) = 2x

• critical points: f ′(x) = 0 ⇒ x = 0

• endpoints: x = −1 and x = 1

• Evaluate f at all critical points and endpoints: f(0) = 0, f(−1) = 1, f(1) = 1

Therefore f has an absolute maximum value of 1 which occurs at x = ±1, and an absolute
minimum value of 0 which occurs at x = 0.

(2) Find the absolute extrema of f(x) = x2/3 on [−2, 3].

• f is differentiable with f ′(x) = 2

3
x−1/3 except at x = 0

• critical points: f ′(x) = 0 or f ′(x) undefined ⇒ x = 0

• endpoints: x = −2 and x = 3

• Evaluate f at all critical points and endpoints: f(−2) = 3
√
4, f(0) = 0, f(3) = 3

√
9
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Therefore f has an absolute maximum value of 3
√
9 at x = 3 and an absolute minimum value

of 0 at x = 0.

Rolle’s theorem
This result tells us that a function which is continuous on a bounded closed interval and
takes the same value at the both endpoints of the interval must have at least one critical
point in the interval.

Theorem 2 (Rolle’s Theorem) Let f be continuous on the closed interval [a, b] and dif-
ferentiable on the open interval (a, b). If f(a) = f(b) then there exists a c ∈ (a, b) with
f ′(c) = 0.

Proof idea:
Apply extreme value theorem and first derivative theorem for extrema to interior points and
consider endpoints separately; for details see the textbook Section 4.2.

Note: It is essential that both the hypotheses in the theorem are fulfilled i.e. f is continuous
on [a, b] and differentiable on (a, b):
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In each case there is no point c ∈ (a, b) with f ′(c) = 0.

Example: Apply Rolle’s theorem to f(x) = x3

3
− 3x on [−3, 3].

• The function f is continuous on [−3, 3], differentiable on (−3, 3), and satisfies f(−3) =
f(3) = 0.

• By Rolle’s theorem there exists (at least) one c ∈ [−3, 3] with f ′(c) = 0.

From f ′(x) = x2 − 3 = 0 we find that f ′(x) = 0 when x = ±
√
3.

The Mean Value Theorem
This extends Rolle’s theorem to the case when f(a) 6= f(b).

Theorem 3 (Mean Value Theorem) Let f(x) be continuous on [a, b] and differentiable
on (a, b). Then there exists a c ∈ (a, b) with

f ′(c) =
f(b)− f(a)

b− a
.
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Proof idea: Let y = g(x) be the equation of the line through the points A = (a, f(a)) and
B = (b, f(b)). Define a new function h by putting h(x) = f(x)−g(x). Then h(a) = 0 = h(b)
and we can deduce the Mean Value Theorem for f by applying Rolle’s Theorem to h.

Example: Consider f(x) = x2 on [0, 2].

• f(x) is continuous and differentiable on [0, 2].

• Therefore there is a c ∈ (0, 2) with f ′(c) =
f(2)− f(0)

2− 0
= 2.

• Since f ′(x) = 2x, we can solve f ′(c) = 2c = 2 to find that c = 1.

The following corollaries use the Mean Value Theorem to deduce information about a func-
tion from its derivative.
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Corollary 1 (Functions with zero derivatives are constant) If f ′(x) = 0 for all x ∈
(a, b) then f(x1) = f(x2) for all x1, x2 ∈ (a, b).

Proof idea:
Apply the Mean Value Theorem to the closed interval [x1, x2].

Corollary 2 (Functions with the same derivative differ by a constant) If f ′(x) =
g′(x) for all x ∈ (a, b), then f(x) = g(x) + C for some constant C ∈ R.

Proof: Consider h(x) = f(x) − g(x). As h′(x) = f ′(x) − g′(x) = 0 for all x ∈ (a, b),
h(x) = C for some constant C ∈ R by the previous corollary. Hence f(x) = g(x) + C.

•

Example: If f(x) = x2 then f ′(x) = 2x. Hence every function h for which h′(x) = f ′(x) =
2x is of the form h(x) = f(x) + C = x2 + C for some C ∈ R.

Monotonic functions

Example: f(x) = x2 decreases on (−∞, 0] and increases on [0,∞). It is monotonic on
(−∞, 0] and on [0,∞) but not monotonic on (−∞,∞).
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Theorem 4 (First derivative test for monotonic functions) Suppose that f is con-
tinuous on [a, b] and differentiable on (a, b).
If f ′(x) > 0 at each point x ∈ (a, b), then f is increasing on [a, b].
If f ′(x) < 0 at each point x ∈ (a, b), then f is decreasing on [a, b].

Proof idea:
The Mean Value theorem tells us that, for any x1, x2 ∈ [a, b] with x1 < x2, there exists a
c ∈ [x1, x2] with f(x2)−f(x1) = f ′(c)(x2−x1). Hence, the sign of f ′(c) determines whether
f(x2) < f(x1) or f(x2) < f(x1).

Example: Find the critical points of f(x) = x3 − 12x − 5 and identify the intervals on
which f is increasing and decreasing.

We have f ′(x) = 3x2 − 12 = 3(x2 − 4) = 3(x + 2)(x − 2). Hence f ′(x) = 0 implies that
x = −2 or x = 2. These critical points subdivide the natural domain of f , (−∞,∞), into
three subintervals (−∞,−2), (−2, 2), (2,∞). Since f ′ is continuous it will have constant sign
on each of these subintervals by the Intermediate Value Theorem. Hence we can determine
the sign of f ′ on each subinterval by computing f ′(x) at one point x in the subinterval. We
have: f ′(−3) = 15 , f ′(0) = −12 , f ′(3) = 15. Thus

interval (−∞,−2) (−2, 2) (2,∞)
sign of f ′ + − +

behaviour of f increasing decreasing increasing
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First derivatives and local extrema

Example:

• Whenever f has a local minimum, f ′ < 0 to the left and f ′ > 0 to the right.

• Whenever f has a local maximum, f ′ > 0 to the left and f ′ < 0 to the right.

This implies that the sign of f ′ changes at local extrema.

Example: Find the critical points of f(x) = x4/3 − 4x1/3, identify the intervals on which f

is increasing and decreasing, and find the function’s extrema.

We have

f ′(x) =
4

3
x1/3 − 4

3
x−2/3 =

4(x− 1)

3x2/3
=

4(x− 1)

3(x1/3)2
.

Hence f has two critical points at x = 1 and x = 0 and we have:

intervals x < 0 0 < x < 1 1 < x

sign of f ′ − − +
behaviour of f decreasing decreasing increasing

Apply the first derivative test to identify local extrema:

• f ′ does not change sign at x = 0 so f has no extremum at x = 0;
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• f ′ changes sign from − to + at x = 1 so f has a local minimum at x = 0.

Note that, since limx→∞ f(x) = ∞ and limx→−∞ f(x) = ∞, the local minimum at x = 1
with f(1) = −3 is also an absolute minimum.
Note also that limx→0 f

′(x) = −∞ so the function is decreasing ‘infinitely fast’ when x = 0.

Concave Functions

intervals x < 0 0 < x

turning of curve turns to the right turns to the left
tangent slopes decreasing increasing



13

The turning or bending behaviour defines the concavity of the curve.
In the literature you often find that ‘concave up’ is referred to as convex, and ‘concave down’
is simply called concave.

If f is twice differential on an interval I, the First Derivative Test for Monotonic Functions
implies that f ′ increases on I if f ′′(x) > 0 for all x ∈ I and decreases if f ′′(x) < 0 for all
x ∈ I. This gives:

Examples: (1) y = x3. We have y′′ = 6x. For x ∈ (−∞, 0), y′′(x) < 0 and so the graph is
concave down. For x ∈ (0,∞), y′′(x) > 0 and the graph is concave up.

(2) y = x2. We have y′′(x) = 2 > 0 for all x ∈ R. Hence the graph is concave up everywhere.
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Points of inflection

We saw in the first example above that the graph of y = x3 changes concavity at the point
(0, 0). Such a point is covered by the following definition.

The condition that the graph of the function has a tangent line at a point is more general
than saying that the function is differentiable at the point since it allows the tangent line
to be vertical (and hence the derivative to be ‘infinite’).

Example Consider y = x1/3. We have y′ = 1

3
x−

2

3 and y′′ = −2

9
x−

5

3 . Hence y′′ does not
exist at x = 0. On the other hand limx→0− y′′(x) = ∞ and limx→0+ y′′(x) = −∞. Thus y′′

changes sign as we pass through x = 0 and we do have a point of inflection at x = 0 (even
though y′′(0) does not exist).

Suppose f is a function. At a point of inflection (c, f(c)) of f we have f ′′(x) > 0 on one
side of c, f ′′(x) < 0 on the other side of c, and either f ′′(c) = 0 or f ′′ is undefined at c itself.
Thus, if f ′′(c) exists, then (c, f(c)) is a point of inflection if and only if f ′′(c) = 0 AND f ′

has a local maximum or minimum at x = c.
Example: Consider f(x) = x3 − 3x. We have f ′(x) = 3x2 − 3 and f ′′(x) = 6x. Since
f ′′(0) = 0 and f ′(0) = −3 is a local minimum of f ′, the graph of f has a point of inflection
at x = 0.

Note, however, that we can have f ′′(c) = 0 without (c, f(c)) being a point of inflection
(when f ′ does not change sign at x = c).

Example Consider y = x4. We have y′ = 4x3 and y′′ = 12x2. Thus y′′(0) = 0. BUT y′′

does not change sign at x = 0. Hence there is no inflection point at x = 0.
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