MTH4101 Calculus II

Lecture notes for Week 8
Series III and Integration III
Thomas' Calculus, Sections 10.8 to 10.10 and 15.1

Rainer Klages
School of Mathematical Sciences
Queen Mary, University of London
Spring 2013

Taylor and Maclaurin Series

Assume that the function $f(x)$ can be represented as a power series

$$
f(x)=\sum_{n=0}^{\infty} a_{n}(x-a)^{n}=a_{0}+a_{1}(x-a)+\cdots+a_{n}(x-a)^{n}+\cdots
$$

and converges for $a-R<x<a+R$ with $R>0$. Can we calculate the coefficients a_{n} in terms of $f(x)$?
It can be shown ${ }^{1}$ that $f(x)$ has derivatives of all orders inside this interval by differentiating the power series term by term:

$$
\begin{aligned}
f^{\prime}(x) & =a_{1}+2 a_{2}(x-a)+\cdots+n a_{n}(x-a)^{n-1}+\cdots \\
f^{\prime \prime}(x) & =1 \cdot 2 a_{2}+2 \cdot 3 a_{3}(x-a)+\cdots+n(n-1) a_{n}(x-a)^{n-2}+\cdots \\
& \vdots \\
f^{(n)}(x) & =n!a_{n}+\text { a sum of terms with }(x-a) \text { as a factor. }
\end{aligned}
$$

Therefore

$$
f^{\prime}(a)=a_{1}, f^{\prime \prime}(a)=1 \cdot 2 a_{2}, f^{\prime \prime \prime}(a)=1 \cdot 2 \cdot 3 a_{3}, \ldots, f^{(n)}(a)=n!a_{n} .
$$

This gives us a formula for the coefficients in the power series:

$$
a_{n}=\frac{f^{(n)}(a)}{n!} .
$$

It also suggest that if f has a power series representation then it must be

$$
f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}+\cdots .
$$

leading us to the following definition:

DEFINITIONS Taylor Series, Maclaurin Series

Let f be a function with derivatives of all orders throughout some interval containing a as an interior point. Then the Taylor series generated by f at $x=a$ is

$$
\begin{array}{r}
\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k}=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2} \\
+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}+\cdots .
\end{array}
$$

The Maclaurin series generated by \boldsymbol{f} is

$$
\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^{k}=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\cdots+\frac{f^{(n)}(0)}{n!} x^{n}+\cdots,
$$

the Taylor series generated by f at $x=0$.

[^0]
Example:

Find the Taylor series generated by $f(x)=1 / x$ at $x=2$. Where, if anywhere, does the series converge to $1 / x$?

$$
\begin{aligned}
f(x) & =x^{-1} ; \quad f(2)=2^{-1}=\frac{1}{2} \\
f^{\prime}(x) & =-x^{-2} ; \quad f^{\prime}(2)=-\frac{1}{2^{2}} \\
f^{\prime \prime}(x) & =2!x^{-3} ; \quad \frac{f^{\prime \prime}(2)}{2!}=2^{-3}=\frac{1}{2^{3}} \\
& \vdots \\
f^{(n)}(x) & =(-1)^{n} n!x^{-(n+1)} ; \quad \frac{f^{(n)}(2)}{n!}=\frac{(-1)^{n}}{2^{n+1}} .
\end{aligned}
$$

The Taylor series is

$$
f(2)+f^{\prime}(2)(x-2)+\frac{f^{\prime \prime}(2)}{2!}(x-2)^{2}+\cdots+\frac{f^{(n)}(2)}{n!}(x-2)^{n}+\cdots
$$

This is a geometric series with first term $1 / 2$ and ratio $r=-(x-2) / 2$. It converges absolutely for $|x-2|<2$, or $0<x<4$ with sum

$$
S=\frac{1 / 2}{1+(x-2) / 2}=\frac{1}{2+(x-2)}=\frac{1}{x} .
$$

Related to the Taylor series is the Taylor polynomial of order n :

DEFINITION Taylor Polynomial of Order n

Let f be a function with derivatives of order k for $k=1,2, \ldots, N$ in some interval containing a as an interior point. Then for any integer n from 0 through N, the Taylor polynomial of order \boldsymbol{n} generated by f at $x=a$ is the polynomial

$$
\begin{aligned}
P_{n}(x)=f(a)+f^{\prime}(a)(x-a) & +\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots \\
& +\frac{f^{(k)}(a)}{k!}(x-a)^{k}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n} .
\end{aligned}
$$

There is a similar definition for Maclaurin polynomials.

Example:

Find the Taylor polynomials of order 0,2 and 4 for the function $f(x)=\cos x$ at $x=0$. We have

$$
f(x)=\cos x, \quad f^{\prime}(x)=-\sin x, \quad f^{\prime \prime}(x)=-\cos x, \quad f^{\prime \prime \prime}(x)=\sin x, \quad f^{(4)}(x)=\cos x
$$

and

$$
f(0)=1, \quad f^{\prime}(0)=0, \quad f^{\prime \prime}(0)=-1, \quad f^{\prime \prime \prime}(0)=0, \quad f^{(4)}(0)=1
$$

By using the previous definition, the first three Taylor polynomials of $f(x)=\cos x$ about $x=0$ are

$$
\begin{aligned}
P_{0}(x) & =1 \\
P_{2}(x) & =1-\frac{x^{2}}{2!} \\
P_{4}(x) & =1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!} .
\end{aligned}
$$

The following figure shows how successive Taylor polynomials provide better and better approximations to the function as $n \rightarrow \infty$:

Below we give the Taylor series expansions for a variety of functions about $x=0$ and $x=1$.
These can all be derived using the methods in this section.
Taylor series about $x=0$:

$$
\begin{aligned}
e^{x} & =1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots \\
\sin x & =x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots \\
\cos x & =1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots \\
\cosh x & =1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\frac{x^{6}}{6!}+\cdots \\
\sinh x & =x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\frac{x^{7}}{7!}+\cdots .
\end{aligned}
$$

Taylor series about $x=1$:

$$
\begin{aligned}
\ln x & =(x-1)-\frac{1}{2}(x-1)^{2}+\frac{1}{3}(x-1)^{3}-\frac{1}{4}(x-1)^{4}+\cdots \\
\sqrt{x} & =1+\frac{1}{2}(x-1)-\frac{1}{8}(x-1)^{2}+\frac{1}{16}(x-1)^{3}-\cdots .
\end{aligned}
$$

Convergence of Taylor Series and Error Estimates

There are still two unanswered questions about Taylor series:

1. When does a Taylor series converge to the function that generated it?
2. How accurately do a function's Taylor polynomials approximate the function on a given interval?

To answer these questions we need to make use of Taylor's formula:

Taylor's Formula

If f has derivatives of all orders in an open interval I containing a, then for each positive integer n and for each x in I,

$$
\begin{align*}
f(x)= & f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots \\
& +\frac{f^{(n)}(a)}{n!}(x-a)^{n}+R_{n}(x), \tag{1}
\end{align*}
$$

where

$$
\begin{equation*}
R_{n}(x)=\frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1} \quad \text { for some } c \text { between } a \text { and } x . \tag{2}
\end{equation*}
$$

This theorem can be understood as a generalization of the Mean Value Theorem (set $n=0$ in the above formula).
The quantity $R_{n}(x)$ in Taylor's Formula is called the remainder of order n or the error term for the approximation of f by $P_{n}(x)$ over I. If $R_{n}(x) \rightarrow 0$ as $n \rightarrow \infty$ for all $x \in I$, we say that the Taylor series converges to f on I and we write

$$
f(x)=\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k} .
$$

Finally we can use the Remainder Estimation Theorem to provide an estimate of the error:

THEOREM 23 The Remainder Estimation Theorem

If there is a positive constant M such that $\left|f^{(n+1)}(t)\right| \leq M$ for all t between x and a, inclusive, then the remainder term $R_{n}(x)$ in Taylor's Theorem satisfies the inequality

$$
\left|R_{n}(x)\right| \leq M \frac{|x-a|^{n+1}}{(n+1)!} .
$$

If this condition holds for every n and the other conditions of Taylor's Theorem are satisfied by f, then the series converges to $f(x)$.

The usefulness of this theorem is demonstrated by the following example:

Example:

Show that the Taylor series for $\sin x$ at $x=0$ converges for all x.
We have

$$
f(x)=\sin x, \quad f^{\prime}(x)=\cos x, \quad f^{\prime \prime}(x)=-\sin x, \ldots
$$

and, in general,

$$
f^{(2 k)}(x)=(-1)^{k} \sin x, \quad f^{(2 k+1)}(x)=(-1)^{k} \cos x
$$

Therefore, evaluating at $x=0$ gives $f^{(2 k)}(0)=0$ and $f^{(2 k+1)}(0)=(-1)^{k}$. Hence the Taylor series for $\sin x$ at $x=0$ is

$$
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots+\frac{(-1)^{k} x^{2 k+1}}{(2 k+1)!}+R_{2 k+1}(x) .
$$

Applying the Remainder Estimation Theorem with $M=1$ gives

$$
\left|R_{2 k+1}(x)\right| \leq 1 \cdot \frac{|x|^{2 k+2}}{(2 k+2)!} \rightarrow 0 \text { as } k \rightarrow \infty \text { for all } x
$$

(cf. the list of sequences and their limits discussed in Week 5) Therefore $R_{2 k+1}(x) \rightarrow 0$ and the Maclaurin series for $\sin x$ converges to $\sin x$ for every x.

Applications of Power Series

Binomial series

The Taylor series generated by $f(x)=(1+x)^{m}$ (around $x=0$) where m is a constant is

$$
\begin{gathered}
f(x)=1+m x+\frac{m(m-1)}{2!} x^{2}+\frac{m(m-1)(m-2)}{3!} x^{3}+\cdots \\
+\frac{m(m-1)(m-2) \ldots(m-k+1)}{k!} x^{k}+\cdots
\end{gathered}
$$

This is called the binomial series.
If $m \geq 0$ is an integer, the series stops after $(m+1)$ terms because coefficients from $k=m+1$ onwards are zero.
If m is not a positive integer the series is infinite. From the Ratio Test for absolute convergence it follows that this series converges absolutely for $|x|<1$. It can also be shown that the series converges to $(1+x)^{m}$.
We can define this series conveniently as follows:

The Binomial Series

For $-1<x<1$,

$$
(1+x)^{m}=1+\sum_{k=1}^{\infty}\binom{m}{k} x^{k},
$$

where we define

$$
\binom{m}{1}=m, \quad\binom{m}{2}=\frac{m(m-1)}{2!},
$$

and

$$
\binom{m}{k}=\frac{m(m-1)(m-2) \cdots(m-k+1)}{k!} \quad \text { for } k \geq 3 .
$$

Note that $m \in \mathbb{R}$. In the case of $m \in \mathbb{N}$ we recover the familiar binomial coefficients. Note also the relation between the binomial series and the binomial formula.
In the case where $m=-1$,

$$
\binom{-1}{1}=-1, \quad\binom{-1}{2}=1 \quad \text { and } \quad\binom{-1}{k}=(-1)^{k} .
$$

For example,

$$
\begin{aligned}
\frac{x}{1+x^{2}} & =x\left(1+x^{2}\right)^{-1} \\
& =x\left(1-x^{2}+\frac{(-1)(-2)}{2!} x^{4}+\frac{(-1)(-2)(-3)}{3!} x^{6}+\cdots\right) \\
& =x\left(1-x^{2}+x^{4}-x^{6}+\cdots\right) \\
& =x-x^{3}+x^{5}-x^{7}+\cdots
\end{aligned}
$$

which is a geometric series.

Reading assignment: Work yourself through the following two examples. (cf. Examples 3 and 7 in Thomas' Calculus, Section 10.10)

Evaluation of non-elementary integrals

We can use the term-by-term integration property of power series to allow us to do nonelementary integrals.

Example:

Express $\int \sin x^{2} \mathrm{~d} x$ as a power series.
Recall that

$$
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots
$$

Hence

$$
\sin x^{2}=x^{2}-\frac{x^{6}}{3!}+\frac{x^{10}}{5!}-\cdots
$$

and so

$$
\int \sin x^{2} \mathrm{~d} x=C+\frac{x^{3}}{3}-\frac{x^{7}}{7 \cdot 3!}+\frac{x^{11}}{11 \cdot 5!}-\cdots
$$

where C is a constant of integration.

Evaluating indeterminate forms

Power series also provide an alternative to L'Hôpital's rule for evaluating indeterminate forms.

Example:

Find

$$
\lim _{x \rightarrow 0}\left(\frac{1}{\sin x}-\frac{1}{x}\right)
$$

We can write

$$
\begin{aligned}
\frac{1}{\sin x}-\frac{1}{x} & =\frac{x-\sin x}{x \sin x}=\frac{x-\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots\right)}{x \cdot\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots\right)} \\
& =\frac{x^{3}\left(\frac{1}{3!}-\frac{x^{2}}{5!}+\cdots\right)}{x^{2}\left(1-\frac{x^{2}}{3!}+\cdots\right)}=x \frac{\left(\frac{1}{3!}-\frac{x^{2}}{5!}+\cdots\right)}{\left(1-\frac{x^{2}}{3!}+\cdots\right)} .
\end{aligned}
$$

Hence

$$
\lim _{x \rightarrow 0}\left(\frac{1}{\sin x}-\frac{1}{x}\right)=\lim _{x \rightarrow 0}\left(x \frac{\left(\frac{1}{3!}-\frac{x^{2}}{5!}+\cdots\right)}{\left(1-\frac{x^{2}}{3!}+\cdots\right)}\right)=0
$$

Note that since $1 / \sin x-1 / x \approx x \cdot(1 / 3!)=x / 6$, we can write $\operatorname{cosec} x \approx(1 / x)+(x / 6)$.

Double Integrals

Consider a function $f(x, y)$ defined on a rectangular region $R: a \leq x \leq b, c \leq y \leq d$ partitioned into small rectangles A_{k} :

The area of a small rectangle with sides Δx_{k} and Δy_{k} is

$$
\Delta A_{k}=\Delta x_{k} \Delta y_{k}
$$

Choose a point $\left(x_{k}, y_{k}\right)$ in the (suitably numbered) k th rectangle with function value $f\left(x_{k}, y_{k}\right)$. We can consider $z=f(x, y)$ as defining the height z at the point (x, y). The product $f\left(x_{k}, y_{k}\right) \Delta A_{k}$ is then the volume of a solid with base area ΔA_{k} and height $f\left(x_{k}, y_{k}\right)$ (for which we assume that $\left.f\left(x_{k}, y_{k}\right)>0\right)$:

The Riemann sum S_{n} of these solids over R is

$$
S_{n}=\sum_{k=1}^{n} f\left(x_{k}, y_{k}\right) \Delta A_{k}
$$

Now consider what happens as $\Delta A_{k} \rightarrow 0($ as $n \rightarrow \infty)$, i.e., we refine the partitioning. When the limit of these sums exists the function f is said to be integrable and the limit is called the double integral of f over R, written as

$$
\int_{R} \int f(x, y) \mathrm{d} A \quad \text { or } \quad \int_{R} \int f(x, y) \mathrm{d} x \mathrm{~d} y
$$

The volume of the portion of the solid directly above the base ΔA_{k} is $f\left(x_{k}, y_{k}\right) \Delta A_{k}$. Hence the total volume above the region R is

$$
\text { Volume }=\lim _{n \rightarrow \infty} S_{n}=\int_{R} \int f(x, y) \mathrm{d} A
$$

where $\Delta A_{k} \rightarrow 0$ as $n \rightarrow \infty$. The following figure shows how the Riemann sum approximations of the volume become more accurate as the number n of boxes increases:

(a) $n=16$

(b) $n=64$

(c) $n=256$

[^0]: ${ }^{1}$ This is a theorem, which can be proved. Likewise, it can be proved that $f(x)$ can be integrated term by term; see Thomas' Calculus, end of Section 10.7. for details.

