MTH4100 Calculus I

Bill Jackson
School of Mathematical Sciences QMUL

Week 6, Semester 1, 2012

Derivatives of trigonometric functions

$$
\begin{aligned}
\frac{d}{d x} \sin x & =\cos x \\
\frac{d}{d x} \cos x & =-\sin x \\
\frac{d}{d x} \tan x & =\frac{1}{\cos ^{2} x}=\sec ^{2} x \\
\frac{d}{d x} \sec x & =\frac{d}{d x}\left(\frac{1}{\cos x}\right)=\sec x \tan x \\
\frac{d}{d x} \cot x & =\frac{d}{d x}\left(\frac{\cos x}{\sin x}\right)=-\csc ^{2} x \\
\frac{d}{d x} \csc x & =\frac{d}{d x}\left(\frac{1}{\sin x}\right)=-\csc x \cot x
\end{aligned}
$$

Derivatives of compositions of functions

THEOREM 3 The Chain Rule

If $f(u)$ is differentiable at the point $u=g(x)$ and $g(x)$ is differentiable at x, then the composite function $(f \circ g)(x)=f(g(x))$ is differentiable at x, and

$$
(f \circ g)^{\prime}(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x)
$$

In Leibniz's notation, if $y=f(u)$ and $u=g(x)$, then

$$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x},
$$

where $d y / d u$ is evaluated at $u=g(x)$.

Derivatives of compositions of functions

THEOREM 3 The Chain Rule

If $f(u)$ is differentiable at the point $u=g(x)$ and $g(x)$ is differentiable at x, then the composite function $(f \circ g)(x)=f(g(x))$ is differentiable at x, and

$$
(f \circ g)^{\prime}(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x)
$$

In Leibniz's notation, if $y=f(u)$ and $u=g(x)$, then

$$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x},
$$

where $d y / d u$ is evaluated at $u=g(x)$.

Example Differentiate $y=\sin \left(x^{2}+x\right)$.

Parametric Curves

We can describe a point P moving in the $x y$-plane as a function of a parameter t ("time") by two functions $x=f(t)$ and $y=g(t)$ which give the coordinates of P at time t.

Parametric Curves - Definitions

DEFINITION Parametric Curve

If x and y are given as functions

$$
x=f(t), \quad y=g(t)
$$

over an interval of t-values, then the set of points $(x, y)=(f(t), g(t))$ defined by these equations is a parametric curve. The equations are parametric equations for the curve.

DEFINITION Parametric Curve

If x and y are given as functions

$$
x=f(t), \quad y=g(t)
$$

over an interval of t-values, then the set of points $(x, y)=(f(t), g(t))$ defined by these equations is a parametric curve. The equations are parametric equations for the curve.

The variable t is the parameter for the curve. If the interval of possible t-values is $[a, b]$, then $[a, b]$ is called the parameter interval, the point $(f(a), g(a))$ is the initial point of the curve, and the point $(f(b), g(b))$ is the terminal point of the curve. The parametric equations and the parameter interval together form a parametrisation of the curve.

Parametric Curves - Example

Determine the curve defined by the parametrisation $x=\sqrt{t}, y=t, t \in[0, \infty)$.

Parametric Curves - Example

Determine the curve defined by the parametrisation $x=\sqrt{t}, y=t, t \in[0, \infty)$.

Parametric Curves - Example

Find a parametrisation for the line segment in the $x y$-plane which joins the points $(-2,1)$ and $(3,5)$.

Differentiable Curves

Definition A parametrised curve $x=f(t), y=g(t)$ is differentiable at t if f and g are both differentiable at t.

Differentiable Curves

Definition A parametrised curve $x=f(t), y=g(t)$ is differentiable at t if f and g are both differentiable at t.
It can be shown that if f and g are both differentiable at t then y is a differentiable function of x when $x=g(t)$. We can now use the chain rule to deduce that

$$
\frac{d y}{d t}=\frac{d y}{d x} \frac{d x}{d t}
$$

Differentiable Curves

Definition A parametrised curve $x=f(t), y=g(t)$ is differentiable at t if f and g are both differentiable at t.
It can be shown that if f and g are both differentiable at t then y is a differentiable function of x when $x=g(t)$. We can now use the chain rule to deduce that

$$
\frac{d y}{d t}=\frac{d y}{d x} \frac{d x}{d t}
$$

Solving for $d y / d x$ gives us a formula for the slope of the parametrised curve $x=f(t), y=g(t)$ when it is differentiable at t and $d x / d t \neq 0$:
Parametric formula for $d y / d x$

$$
\frac{d y}{d x}=\frac{d y / d t}{d x / d t}
$$

Differentiable Curves - Example

Describe the motion of a particle whose position (x, y) at time t is given by

$$
x=a \cos t, \quad y=b \sin t, \quad 0 \leq t \leq 2 \pi
$$

and compute the slope of this curve at time t.

