
 Queen Mary
 University of London

MTH4100 Calculus I

Lecture notes for Week 6
Thomas' Calculus, Sections 3.5 to 3.7, 3.9, 4.1, 11.1 (p.610-613) and 11.2 (p.618-619)

Prof Bill Jackson

School of Mathematical Sciences
Queen Mary University of London

Autumn 2012

Derivatives of trigonometric functions

(1) Differentiate $f(x)=\sin x$:

- Start with the definition of $f^{\prime}(x)$:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\sin (x+h)-\sin x}{h}
$$

- Use $\sin (x+h)=\sin x \cos h+\cos x \sin h$:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\sin x(\cos h-1)+\cos x \sin h}{h}
$$

- Collect terms and apply limit laws:

$$
f^{\prime}(x)=\sin x \lim _{h \rightarrow 0} \frac{\cos h-1}{h}+\cos x \lim _{h \rightarrow 0} \frac{\sin h}{h}
$$

- Use $\lim _{h \rightarrow 0} \frac{\cos h-1}{h}=0$ and $\lim _{h \rightarrow 0} \frac{\sin h}{h}=1$ to conclude $f^{\prime}(x)=\cos x$.
(2) A similar argument gives $\frac{d}{d x} \cos x=-\sin x$.
(3) We can now use the quotient rule to find the derivative of $\tan x$.

$$
\begin{aligned}
\frac{d}{d x} \tan x & =\frac{d}{d x}\left(\frac{\sin x}{\cos x}\right) \\
& =\frac{\frac{d}{d x}(\sin x) \cos x-\sin x \frac{d}{d x}(\cos x)}{\cos ^{2} x} \\
& =\frac{\cos x \cos x-\sin x(-\sin x)}{\cos ^{2} x} \\
& =\frac{\cos ^{2} x+\sin ^{2} x}{\cos ^{2} x} \\
& =\frac{1}{\cos ^{2} x}
\end{aligned}
$$

Summary: Derivatives of trigonometric functions

$$
\begin{aligned}
\frac{d}{d x} \sin x & =\cos x \\
\frac{d}{d x} \cos x & =-\sin x \\
\frac{d}{d x} \tan x & =\frac{1}{\cos ^{2} x}=\sec ^{2} x \\
\frac{d}{d x} \sec x & =\frac{d}{d x}\left(\frac{1}{\cos x}\right)=\sec x \tan x \\
\frac{d}{d x} \cot x & =\frac{d}{d x}\left(\frac{\cos x}{\sin x}\right)=-\csc ^{2} x \\
\frac{d}{d x} \csc x & =\frac{d}{d x}\left(\frac{1}{\sin x}\right)=-\csc x \cot x
\end{aligned}
$$

Differentiating the composition of two functions

THEOREM 3 The Chain Rule

If $f(u)$ is differentiable at the point $u=g(x)$ and $g(x)$ is differentiable at x, then the composite function $(f \circ g)(x)=f(g(x))$ is differentiable at x, and

$$
(f \circ g)^{\prime}(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x)
$$

In Leibniz's notation, if $y=f(u)$ and $u=g(x)$, then

$$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}
$$

where $d y / d u$ is evaluated at $u=g(x)$.

The chain rule tells us that the rate of change of $f \circ g$ at x is equal to the rate of change of g at x multiplied by the rate of change of f at $g(x)$.
Example: Differentiate $y=\sin \left(x^{2}+x\right)$.
Let $u=x^{2}+x$ and $y=\sin u$. Then $\frac{d u}{d x}=2 x+1$ and $\frac{d y}{d u}=\cos u$. Hence

$$
\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}=(2 x+1) \cos \left(x^{2}+x\right) .
$$

Parametric Curves

We can describe a point P moving in the $x y$-plane as a function of a parameter t ("time") by two functions $x=f(t)$ and $y=g(t)$ which give the coordinates of P at time t.

DEFINITION Parametric Curve

If x and y are given as functions

$$
x=f(t), \quad y=g(t)
$$

over an interval of t-values, then the set of points $(x, y)=(f(t), g(t))$ defined by these equations is a parametric curve. The equations are parametric equations for the curve.

The variable t is the parameter for the curve. If the interval of possible t-values is $[a, b]$, then $[a, b]$ is called the parameter interval, the point $(f(a), g(a))$ is the initial point of the curve, and the point $(f(b), g(b))$ is the terminal point of the curve. The parametric equations and the parameter interval together form a parametrisation of the curve.

Examples:

(1) Determine the curve defined by the parametrisation $x=\sqrt{t}, y=t, t \in[0, \infty)$.

In this example it is easy to solve the parametric equations and express y as a function of x : we have $y=t$ and $t=x^{2}$ so $y=x^{2}$. Note however that since $x=\sqrt{t}, x$ only takes nonnegative values. Thus the curve is the segment of the parabola $y=x^{2}$ which lies in the positive quadrant.

(2) Find a parametrisation for the line segment in the $x y$-plane which joins the points $(-2,1)$ and $(3,5)$.
Let's suppose a point $P=(x(t), y(t))$ moves along the line segment starting at $(-2,1)$ when $t=0$ and ending at $(3,5)$ when $t=1$. Assuming the point moves at constant speed, its position at time t will be $(-2,1)+t[(3,5)-(-2,1)]=(-2+5 t, 1+4 t)$. This gives the parametrisation: $x=-2+5 t$ and $y=1+4 t$ for $t \in[0,1]$.

Definition A parametrised curve $x=f(t), y=g(t)$ is differentiable at t if f and g are both differentiable at t.

It can be shown that if f and g are both differentiable at t then y is a differentiable function of x when $x=g(t)$. We can now use the chain rule to deduce that

$$
\frac{d y}{d t}=\frac{d y}{d x} \frac{d x}{d t} .
$$

Solving for $d y / d x$ gives us the following formula for the slope of the parametrised curve $x=f(t), y=g(t)$ when it is differentiable at t and $d x / d t \neq 0$.
Parametric formula for $d y / d x$

$$
\frac{d y}{d x}=\frac{d y / d t}{d x / d t} .
$$

Example: Describe the motion of a particle whose position (x, y) at time t is given by

$$
x=a \cos t, \quad y=b \sin t, \quad 0 \leq t \leq 2 \pi
$$

and compute the slope of this curve at time t.

- We first use the two parametric equations to eliminate t and find one equation involving only x and y. Using $\cos t=x / a, \sin t=y / b$ and $\cos ^{2} t+\sin ^{2} t=1$ we obtain

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1,
$$

which is the equation of an ellipse.

- We have $\frac{d x}{d t}=-a \sin t$ and $\frac{d y}{d t}=b \cos t$. The parametric formula for $d y / d x$ now yields

$$
\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{b \cos t}{-a \sin t}=-\frac{b^{2} x}{a^{2} y} .
$$

Thus the slope of the ellipse at the point (x, y) is $-\left(b^{2} x\right) /\left(a^{2} y\right)$.

Implicit differentiation

Suppose we have a curve consisting of all points in the $x y$-plane which satisfy an implicit relation between x and y, i.e. an equation of the form $F(x, y)=0$, and we want to find its slope $d y / d x$. If we can solve the implicit relation $F(x, y)=0$ for y to obtain an explicit relation $y=f(x)$ for some function f then we can just differentiate $f(x)$. We use implicit differentiation when it is not obvious how to solve $F(x, y)=0$ for y.
Example: Given the functional relation $y^{2}=x$, find $d y / d x$.
New method by differentiating implicitly:

- Differente both sides of the equation $y^{2}=x$ with respect to x. Assuming y is a differentiable function of x we can use the chain rule to obtain

$$
2 y \frac{d y}{d x}=1
$$

- Solving for $d y / d x$ we get

$$
\frac{d y}{d x}=\frac{1}{2 y} .
$$

Compare with differentiating explicitly:

- We can solve $y^{2}=x$ to obtain two explicit solutions for $y: y_{1}=\sqrt{x}$ and $y_{2}=-\sqrt{x}$. Thus the curve $y^{2}=x$ is the union of the graphs of the two functions y_{1} and y_{2}. The derivatives of these functions are:

$$
\frac{d y_{1}}{d x}=\frac{1}{2 \sqrt{x}} \text { and } \frac{d y_{1}}{d x}=-\frac{1}{2 \sqrt{x}}
$$

- We should compare this with the solution obtained by implicit differentiation. Substituting $y=y_{1}=\sqrt{x}$ when $y>0$ gives $\frac{d y}{d x}=\frac{1}{2 y}=\frac{1}{2 \sqrt{x}}$. Similarly substituting $y=y_{2}=-\sqrt{x}$ when $y<0$ gives $\frac{d y}{d x}=\frac{1}{2 y}=-\frac{1}{2 \sqrt{x}}$. Thus both solutions give the same value for $d y / d x$.

Implicit Differentiation

1. Differentiate both sides of the equation with respect to x, treating y as a differentiable function of x.
2. Collect the terms with $d y / d x$ on one side of the equation.
3. Solve for $d y / d x$.

Example: Use implicit differentiation to find $d y / d x$ for the ellipse, $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
The three steps in the above method for implicit differentiation give:

1. $\frac{2 x}{a^{2}}+\frac{2 y y^{\prime}}{b^{2}}=0$
2. $\frac{2 y y^{\prime}}{b^{2}}=-\frac{2 x}{a^{2}}$
3. $y^{\prime}=-\frac{b^{2}}{a^{2}} \frac{x}{y}$.

This agrees with the result obtained previously using a parametrisation of the elipse.
Application: We can use implicit differentiation to calculate the derivative of the power function $y=x^{a}$ when a is a rational number, say $a=p / q$ for some integers p, q with $q \neq 0$:

- we have

$$
y^{q}=x^{p}
$$

- implicit differentiation gives:

$$
q y^{q-1} \frac{d y}{d x}=p x^{p-1}
$$

- solving for $\frac{d y}{d x}$ as a function of x we obtain:

$$
\frac{d y}{d x}=\frac{p}{q} \frac{x^{p-1}}{y^{q-1}}=\frac{p}{q} \frac{x^{p}}{y^{q}} \frac{y}{x}=\frac{p}{q} \frac{y}{x}=\frac{p}{q} \frac{x^{\frac{p}{q}}}{x}=\frac{p}{q} x^{\frac{p}{q}-1}
$$

THEOREM 4 Power Rule for Rational Powers

If p / q is a rational number, then $x^{p / q}$ is differentiable at every interior point of the domain of $x^{(p / q)-1}$, and

$$
\frac{d}{d x} x^{p / q}=\frac{p}{q} x^{(p / q)-1} .
$$

Linearisation

We can use linearisation to replace a complicated function by a much simpler linear function if we are only interested in the values of the function close to a given point.

"Close to" the point $(a, f(a))$, the tangent $L(x)=f(a)+f^{\prime}(a)(x-a)$ is a "good" approximation for $y=f(x)$.

DEFINITIONS Linearization, Standard Linear Approximation

If f is differentiable at $x=a$, then the approximating function

$$
L(x)=f(a)+f^{\prime}(a)(x-a)
$$

is the linearization of f at a. The approximation

$$
f(x) \approx L(x)
$$

of f by L is the standard linear approximation of f at a. The point $x=a$ is the center of the approximation.

Example: Compute the linearisation of $f(x)=\sqrt{1+x}$ at $x=0$.
We have $f(0)=1$ and $f^{\prime}(x)=\frac{1}{2}(1+x)^{-1 / 2}$. This gives $f^{\prime}(0)=\frac{1}{2}$, so

$$
L(x)=1+\frac{1}{2} x .
$$

How accurate is this approximation? Magnify region around $x=0$:

Approximation	True value	\mid True value - approximation \mid
$\sqrt{1.2} \approx 1+\frac{0.2}{2}=1.10$	1.095445	$<10^{-2}$
$\sqrt{1.05} \approx 1+\frac{0.05}{2}=1.025$	1.024695	$<10^{-3}$
$\sqrt{1.005} \approx 1+\frac{0.005}{2}=1.00250$	1.002497	$<10^{-5}$

Linearisations are used to simplify problems. For example if we are working on a problem which involves the values taken by $f(x)=\sqrt{1+x}$ on some small interval I centered on $x=0$, then we can simplify our calculations and obtain an approximate solution by replacing $f(x)$ by $L(x)=1+\frac{x}{2}$ for all $x \in I$.

Differentials

The difference between the true value of a function $y=f(x)$ close to a point and its linearization can be made more precise using 'differentials'. When we write $y=f(x)$ we are thinking of x as an independent variable and y as a dependent variable. We introduce two new variable: $d x$, which is an independent variable measuring the distance we move from $x ; d y$ which is a dependent variable measuring the resultant change in the linearisation of $y=f(x)$ (and hence depends on both x and $d x$). The two new variables are called differentials. The dependency of y on x and $d x$ is given by the equation for the linearisation of $f(x)$ centered at $x: L(x+d x)=L(x)+f^{\prime}(x)([x+d x]-d x)$. Since $L(x)=f(x)$ and $L(x+d x)-L(x)=d y$ this gives:

$$
d y=f^{\prime}(x) d x
$$

Reading Assignment: read Thomas' Calculus, p. 167-168 about Differentials

Extreme values of functions

DEFINITIONS Absolute Maximum, Absolute Minimum

Let f be a function with domain D. Then f has an absolute maximum value on D at a point c if

$$
f(x) \leq f(c) \quad \text { for all } x \text { in } D
$$

and an absolute minimum value on D at c if

$$
f(x) \geq f(c) \quad \text { for all } x \text { in } D .
$$

These values are also called absolute extrema, or global extrema.

Example:

	Domain	abs. max.	abs. min.
(a)	$(-\infty, \infty)$	none	0 , at 0
(b)	$[0,2]$	4, at 2	0 , at 0
(c)	$(0,2]$	4, at 2	none
(d)	$(0,2)$	none	none

When the domain of f is a closed interval, the existence of a global maximum and minimum is ensured by:

THEOREM 1 The Extreme Value Theorem

If f is continuous on a closed interval $[a, b]$, then f attains both an absolute maximum value M and an absolute minimum value m in $[a, b]$. That is, there are numbers x_{1} and x_{2} in $[a, b]$ with $f\left(x_{1}\right)=m, f\left(x_{2}\right)=M$, and $m \leq f(x) \leq M$ for every other x in $[a, b]$ (Figure 4.3).

Examples:

Maximum and minimum at endpoints

Maximum and minimum at interior points

Maximum at interior point, minimum at endpoint

Minimum at interior point, maximum at endpoint

DEFINITIONS Local Maximum, Local Minimum

A function f has a local maximum value at an interior point c of its domain if $f(x) \leq f(c) \quad$ for all x in some open interval containing c.

A function f has a local minimum value at an interior point c of its domain if $f(x) \geq f(c) \quad$ for all x in some open interval containing c.

Note: Absolute extrema are automatically local extrema, but the converse need not be true.

