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Derivatives of trigonometric functions

(1) Differentiate f(x) = sin x:

• Start with the definition of f ′(x):

f ′(x) = lim
h→0

sin(x+ h)− sin x

h

• Use sin(x+ h) = sin x cosh + cosx sin h:

f ′(x) = lim
h→0

sin x(cos h− 1) + cos x sin h

h

• Collect terms and apply limit laws:

f ′(x) = sin x lim
h→0

cosh− 1

h
+ cosx lim

h→0

sin h

h

• Use lim
h→0

cosh− 1

h
= 0 and lim

h→0

sin h

h
= 1 to conclude f ′(x) = cosx.

(2) A similar argument gives
d

dx
cosx = − sin x.

(3) We can now use the quotient rule to find the derivative of tanx.

d

dx
tan x =

d

dx

(

sin x

cosx

)

=
d
dx
(sin x) cosx− sin x d

dx
(cos x)

cos2 x

=
cosx cosx− sin x(− sin x)

cos2 x

=
cos2 x+ sin2 x

cos2 x

=
1

cos2 x

Summary: Derivatives of trigonometric functions

d

dx
sin x = cosx

d

dx
cosx = − sin x

d

dx
tan x =

1

cos2 x
= sec2 x

d

dx
sec x =

d

dx

(

1

cosx

)

= sec x tan x

d

dx
cot x =

d

dx

(cos x

sin x

)

= − csc2 x

d

dx
csc x =

d

dx

(

1

sin x

)

= − csc x cot x
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Differentiating the composition of two functions

The chain rule tells us that the rate of change of f ◦ g at x is equal to the rate of change of
g at x multiplied by the rate of change of f at g(x).
Example: Differentiate y = sin(x2 + x).
Let u = x2 + x and y = sin u. Then du

dx
= 2x+ 1 and dy

du
= cosu. Hence

dy

dx
=

dy

du

du

dx
= (2x+ 1) cos(x2 + x).

Parametric Curves

We can describe a point P moving in the xy-plane as a function of a parameter t (“time”)
by two functions x = f(t) and y = g(t) which give the coordinates of P at time t.
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The variable t is the parameter for the curve. If the interval of possible t-values is [a, b], then
[a, b] is called the parameter interval, the point (f(a), g(a)) is the initial point of the curve,
and the point (f(b), g(b)) is the terminal point of the curve. The parametric equations and
the parameter interval together form a parametrisation of the curve.

Examples:

(1) Determine the curve defined by the parametrisation x =
√
t , y = t , t ∈ [0,∞).

In this example it is easy to solve the parametric equations and express y as a function of
x: we have y = t and t = x2 so y = x2. Note however that since x =

√
t, x only takes

nonnegative values. Thus the curve is the segment of the parabola y = x2 which lies in the
positive quadrant.

(2) Find a parametrisation for the line segment in the xy-plane which joins the points (−2, 1)
and (3, 5).
Let’s suppose a point P = (x(t), y(t)) moves along the line segment starting at (−2, 1) when
t = 0 and ending at (3, 5) when t = 1. Assuming the point moves at constant speed, its
position at time t will be (−2, 1) + t[(3, 5) − (−2, 1)] = (−2 + 5t, 1 + 4t). This gives the
parametrisation: x = −2 + 5t and y = 1 + 4t for t ∈ [0, 1].

Definition A parametrised curve x = f(t), y = g(t) is differentiable at t if f and g are both
differentiable at t.
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It can be shown that if f and g are both differentiable at t then y is a differentiable function
of x when x = g(t). We can now use the chain rule to deduce that

dy

dt
=

dy

dx

dx

dt
.

Solving for dy/dx gives us the following formula for the slope of the parametrised curve
x = f(t), y = g(t) when it is differentiable at t and dx/dt 6= 0.

Parametric formula for dy/dx

dy

dx
=

dy/dt

dx/dt
.

Example: Describe the motion of a particle whose position (x, y) at time t is given by

x = a cos t , y = b sin t , 0 ≤ t ≤ 2π

and compute the slope of this curve at time t.

• We first use the two parametric equations to eliminate t and find one equation involving
only x and y. Using cos t = x/a, sin t = y/b and cos2 t+ sin2 t = 1 we obtain

x2

a2
+

y2

b2
= 1 ,

which is the equation of an ellipse.

• We have dx
dt

= −a sin t and dy
dt

= b cos t. The parametric formula for dy/dx now yields

dy

dx
=

dy/dt

dx/dt
=

b cos t

−a sin t
= − b2x

a2y
.

Thus the slope of the ellipse at the point (x, y) is −(b2x)/(a2y).

Implicit differentiation

Suppose we have a curve consisting of all points in the xy-plane which satisfy an implicit

relation between x and y, i.e. an equation of the form F (x, y) = 0, and we want to find
its slope dy/dx. If we can solve the implicit relation F (x, y) = 0 for y to obtain an explicit

relation y = f(x) for some function f then we can just differentiate f(x). We use implicit
differentiation when it is not obvious how to solve F (x, y) = 0 for y.
Example: Given the functional relation y2 = x, find dy/dx.

New method by differentiating implicitly:

• Differente both sides of the equation y2 = x with respect to x. Assuming y is a
differentiable function of x we can use the chain rule to obtain

2y
dy

dx
= 1.
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• Solving for dy/dx we get
dy

dx
=

1

2y
.

Compare with differentiating explicitly:

• We can solve y2 = x to obtain two explicit solutions for y: y1 =
√
x and y2 = −

√
x.

Thus the curve y2 = x is the union of the graphs of the two functions y1 and y2. The
derivatives of these functions are:

dy1
dx

=
1

2
√
x
and

dy1
dx

= − 1

2
√
x

• We should compare this with the solution obtained by implicit differentiation. Sub-
stituting y = y1 =

√
x when y > 0 gives dy

dx
= 1

2y
= 1

2
√
x
. Similarly substituting

y = y2 = −
√
x when y < 0 gives dy

dx
= 1

2y
= − 1

2
√
x
. Thus both solutions give the same

value for dy/dx.

Example: Use implicit differentiation to find dy/dx for the ellipse,
x2

a2
+

y2

b2
= 1.

The three steps in the above method for implicit differentiation give:

1.
2x

a2
+

2yy′

b2
= 0
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2.
2yy′

b2
= −2x

a2

3. y′ = − b2

a2
x

y
.

This agrees with the result obtained previously using a parametrisation of the elipse.

Application: We can use implicit differentiation to calculate the derivative of the power
function y = xa when a is a rational number, say a = p/q for some integers p, q with q 6= 0:

• we have yq = xp

• implicit differentiation gives:
qyq−1

dy

dx
= pxp−1

• solving for dy
dx

as a function of x we obtain:

dy

dx
=

p

q

xp−1

yq−1
=

p

q

xp

yq
y

x
=

p

q

y

x
=

p

q

x
p

q

x
=

p

q
x

p

q
−1

Linearisation

We can use linearisation to replace a complicated function by a much simpler linear function
if we are only interested in the values of the function close to a given point.

“Close to” the point (a, f(a)), the tangent L(x) = f(a) + f ′(a)(x− a) is a “good” approxi-
mation for y = f(x).
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Example: Compute the linearisation of f(x) =
√
1 + x at x = 0.

We have f(0) = 1 and f ′(x) = 1

2
(1 + x)−1/2. This gives f ′(0) = 1

2
, so

L(x) = 1 +
1

2
x .

How accurate is this approximation? Magnify region around x = 0:
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Linearisations are used to simplify problems. For example if we are working on a problem
which involves the values taken by f(x) =

√
1 + x on some small interval I centered on x = 0,

then we can simplify our calculations and obtain an approximate solution by replacing f(x)
by L(x) = 1 + x

2
for all x ∈ I.

Differentials

The difference between the true value of a function y = f(x) close to a point and its
linearization can be made more precise using ‘differentials’. When we write y = f(x) we
are thinking of x as an independent variable and y as a dependent variable. We introduce
two new variable: dx, which is an independent variable measuring the distance we move
from x; dy which is a dependent variable measuring the resultant change in the linearisation
of y = f(x) (and hence depends on both x and dx). The two new variables are called
differentials. The dependency of y on x and dx is given by the equation for the linearisation
of f(x) centered at x: L(x + dx) = L(x) + f ′(x)([x + dx] − dx). Since L(x) = f(x) and
L(x+ dx)− L(x) = dy this gives:

dy = f ′(x)dx

Reading Assignment: read

Thomas’ Calculus, p. 167-168 about Differentials

Extreme values of functions

These values are also called absolute extrema, or global extrema.

Example:
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Domain abs. max. abs. min.

(a) (−∞,∞) none 0, at 0
(b) [0, 2] 4, at 2 0, at 0
(c) (0, 2] 4, at 2 none
(d) (0, 2) none none

When the domain of f is a closed interval, the existence of a global maximum and minimum
is ensured by:
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Examples:

Note: Absolute extrema are automatically local extrema, but the converse need not be true.


