
MTH4101 Calculus II

Lecture notes for Week 6

Series II and III

Thomas’ Calculus, Sections 10.3 and 10.5 to 10.7

Rainer Klages

School of Mathematical Sciences

Queen Mary, University of London

Spring 2013



sn =
1

12
+

1

22
+

1

32
+ · · · +

1

n2

= f(1) + f(2) + f(3) · · · + f(n)

< f(1) +

∫ n

1

1

x2
dx lower sum

< 1 +

∫

∞

1

1

x2
dx

Therefore

sn < 1 +

∫

∞

1

1

x2
dx = 1 +

[

−
1

x

]

∞

1

= 2 .

Thus sn < 2 for all n, the partial sums are bounded from above (by 2) and therefore the
series converges. Note that the series and the integral need not have the same value in the
convergent case.
The approach we have just taken leads us to

We will consider the proof for the case N = 1 and we start with the asumption that f is a
decreasing function with f(n) = an for every n.
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In part (a) of the above figure, the areas of the rectangles a1, a2, . . . , an enclose more area
than that under the curve y = f(x) between x = 1 and x = n + 1. Therefore we can write

∫ n+1

1

f(x) dx ≤ a1 + a2 + · · · + an .

Now consider the rectangles as shown in part (b) above. If we ignore the first rectangle we
can write

a2 + a3 + · · · + an ≤

∫ n

1

f(x) dx .

Adding the area a1 to each side gives

a1 + a2 + a3 + · · · + an ≤ a1 +

∫ n

1

f(x) dx

Combining the two inequalities gives
∫ n+1

1

f(x) dx ≤ a1 + a2 + · · · + an ≤ a1 +

∫ n

1

f(x) dx .

These inequalities will hold as n → ∞.
Therefore, if

∫ n

1
f(x) dx is finite, the right-hand part of the inequality shows that

∑

an is

also finite. Similarly, if
∫ n+1

1
f(x) dx is infinite, then

∑

an is infinite by the left-hand part
of the inequality.

The Integral Test can be used to show that the p-series
∑

∞

n=1
1/np converges if p > 1 and

diverges if p ≤ 1.1

1See the Thomas’ Calculus Section 10.3, p.555 for a proof.
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Example:

Show that the series
∑

∞

n=1
1/(n2 + 1) converges by the integral test.

The function f(x) = 1/(x2 + 1) is positive, continuous and decreasing for x ≥ 1. Also

∫

∞

1

1

x2 + 1
dx = lim

b→∞

[arctan x]b
1

= lim
b→∞

[arctan b − arctan 1]

=
π

2
−

π

4
=

π

4

and so the series converges (but we do not know its sum).

The Ratio Test

A proof of the above results is given in the textbook.
The two series we looked at in the last section are good examples of cases where ρ = 1 and
the test is inconclusive:

∑ 1

n
:

an+1

an

=
1/(n + 1)

1/n
=

n

n + 1
→ 1 (n → ∞)

∑ 1

n2
:

an+1

an

=
1/(n + 1)2

1/n2
=

(

n

n + 1

)2

→ 12 = 1 (n → ∞) .

In each case ρ = 1 (i.e. the test is inconclusive) and yet we know that
∑

1/n diverges
whereas

∑

1/n2 converges.

Example:

Use the Ratio Test to investigate the convergence of the following series:

(a)
∞

∑

n=1

2n + 5

3n
, (b)

∞
∑

n=1

(2n)!

(n!)2
, (c)

∞
∑

n=1

n!

nn
.

(a)

an =
2n + 5

3n
; an+1 =

2n+1 + 5

3n+1
;

an+1

an

=
(2n+1 + 5)/3n+1

(2n + 5)/3n
=

1

3
·
2n+1 + 5

2n + 5
=

1

3

(

2 + 5 · 2−n

1 + 5 · 2−n

)

→
1

3
·
2

1
=

2

3
< 1 as n → ∞ and the series converges.
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(b)

an =
(2n)!

(n!)2
; an+1 =

(2(n + 1))!

((n + 1)!)2
;

an+1

an

=
(2n + 2)!

(n + 1)!(n + 1)!
·

n! n!

(2n)!
=

(2n + 2)(2n + 1)

(n + 1)(n + 1)

=
4n + 2

n + 1
=

4 + 2/n

1 + 1/n
→ 4 > 1 and the series diverges.

(c)

an =
n!

nn
; an+1 =

(n + 1)!

(n + 1)n+1
;

an+1

an

=
(n + 1)! nn

(n + 1)n+1n!
=

(n + 1)nn

(n + 1)n(n + 1)

=
nn

(n + 1)n
=

(

n

n + 1

)n

=

(

1

1 + 1/n

)n

→
1

e
< 1

and the series converges.

As we can see, the Ratio Test is often useful when the terms of a series contain factorials
involving n or expressions raised to the power involving n.

Power Series

A power series is like an “infinite polynomial”, i.e., it is an infinite series in powers of
some variable, usually x:

Such series can be added, subtracted, multiplied, differentiated and integrated to give new
power series.

Example:

Consider the case where the coefficients in (1) in the definition above are all unity.:

∞
∑

n=0

cnx
n =

∞
∑

n=0

xn = 1 + x + x2 + · · · + xn + · · · .
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This is just a geometric series with first term 1 and ratio x (a = 1, r = x). We know from
the properties of geometric series that it converges to 1/(1 − x) for |x| < 1. Hence

1

1 − x
= 1 + x + x2 + · · · + xn + · · · , −1 < x < 1 .

We can think of the right-hand side of this equation as a sequence of partial sums which are
polynomials Pn(x) that approximate the function on the left:

f(x) =
1

1 − x
; P0(x) = 1 = y0 (horizontal line)

P1(x) = 1 + x = y1 (straight line, slope 1)

P2(x) = 1 + x + x2 = y2 (quadratic curve [parabola])
...

etc.

Example:

Consider the power series

1 −
1

2
(x − 2) +

1

4
(x − 2)2 − · · · +

(

−
1

2

)n

(x − 2)n + · · · .

This matches the form of (2) in the former definition with a = 2, cn = (−1/2)n. This is a
geometric series with the first term 1 and ratio r = −(x − 2)/2. This series converges for
|(x − 2)/2| < 1 or 0 < x < 4. The sum is

1

1 − r
=

1

1 + (x − 2)/2
=

2

x
.

Hence

2

x
= 1 −

(x − 2)

2
+

(x − 2)2

4
− · · · +

(

−
1

2

)2

(x − 2)n + · · · , 0 < x < 4 .
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Again we can consider the series as a sequence of partial sums which are polynomials Pn(x)
that approximate 2/x:

f(x) =
2

x
; P0(x) = 1 = y0

P1(x) = 1 −
1

2
(x − 2) = 2 −

x

2
= y1

P2(x) = 1 −
1

2
(x − 2) +

1

4
(x − 2)2 = 3 −

3x

2
+

x2

4
= y2

...

etc.

A series
∑

an converges absolutely if the corresponding series of absolute values,
∑

|an|,
converges. Most importantly, it can be shown that if a series converges absolutely, then it
converges.2 This enables us to apply the ratio test and the integral test, which only test the
convergence of series of positive terms.

A series that converges but does not converge absolutely converges conditionally.

2See Section 10.6 for a short but tricky proof.
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Here R is called the radius of convergence and the interval of radius R centred at x = a
is called the interval of convergence.
When studying the convergence of power series such as these, alternating series frequently
arise. Here we can make use of an additional test. The Alternating Series Test (or
Leibniz’s Test) states that the series

∞
∑

n=1

(−1)n+1un = u1 − u2 + u3 − u4 + u5 − · · ·

converges if all three of the following conditions hold:

1. The un are all positive,

2. un ≥ un+1 for all n ≥ N , for some integer N and

3. un → 0 as n → ∞.

Example:

The alternating harmonic series

∞
∑

n=1

(−1)n+1
1

n
= 1 −

1

2
+

1

3
−

1

4
+ · · ·

satisfies all of the above three requirements with N = 1 and hence converges (but not abso-
lutely, as we have shown before).

We can test a power series for convergence using several methods:

1. Use a test such as the ratio test to find the interval where the series converges abso-
lutely.

2. If the interval of absolute convergence is finite, test for convergence or divergence at
each endpoint using a test such as the integral test or the alternating sequences test.

3. If the interval of absolute convergence is a − R < x < a + R, the series diverges for
|x − a| > R.
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Example:

Use the ratio test to determine the convergence of

∞
∑

n=1

(−1)n−1
x2n−1

2n − 1
= x −

x3

3
+

x5

5
− · · · .

We have
∣

∣

∣

∣

un+1

un

∣

∣

∣

∣

=

∣

∣

∣

∣

x2n+1

2n + 1

2n − 1

x2n−1

∣

∣

∣

∣

=
2n − 1

2n + 1
x2 → x2 .

Therefore the series converges absolutely for x2 < 1 and diverges for x2 > 1. At x = 1 the
series is 1 − 1

3
+ 1

5
− 1

7
+ · · · which converges by the alternating sequences test. The series

also converges at x = −1, as can be shown by the alternating sequences test.


