MTH4100 Calculus I

Bill Jackson School of Mathematical Sciences QMUL

Week 5, Semester 1, 2012

Image: A math a math

∃ ⊳

Informally a function defined on an interval is continuous if we can sketch its graph in one continuous motion without lifting our pen from the paper. To give a more precise definition we first define what it means for a function to be continuous at a single point in its domain, and to do this we must distinguish between different kinds of points in the domain.

 x is an *interior point* of D if we have x ∈ I for some open interval I = (a, b) ⊆ D;

A (B) > A (B) > A (B) >

- x is an *interior point* of D if we have x ∈ I for some open interval I = (a, b) ⊆ D;
- x is a *left end-point*, respectively *right end-point*, of D if x is not an interior point of D and we have x ∈ I for some half-closed interval I = [x, b) ⊆ D, respectively
 I = (a, x] ⊆ D;

- x is an *interior point* of D if we have x ∈ I for some open interval I = (a, b) ⊆ D;
- x is a *left end-point*, respectively *right end-point*, of D if x is not an interior point of D and we have x ∈ I for some half-closed interval I = [x, b) ⊆ D, respectively
 I = (a, x] ⊆ D;
- x is an *isolated point* of D if x is neither an interior point nor an end-point.

- x is an *interior point* of D if we have x ∈ I for some open interval I = (a, b) ⊆ D;
- x is a *left end-point*, respectively *right end-point*, of D if x is not an interior point of D and we have x ∈ I for some half-closed interval I = [x, b) ⊆ D, respectively
 I = (a, x] ⊆ D;
- x is an *isolated point* of D if x is neither an interior point nor an end-point.

Example: Let $D = [1,2] \cup (3,4] \cup \{5\}$. Then *D* has one left end-point, 1; two right endpoints 2,4; one isolated point 5; and all other points in *D* are interior points.

(人間) システン イラン

f is continuous at an interior point c of D if lim_{x→c} f(x) exists and is equal to f(c).

(4 同) (4 日) (4 日)

- f is continuous at an interior point c of D if lim_{x→c} f(x) exists and is equal to f(c).
- f is continuous at a left end-point a of D if $\lim_{x\to a^+} f(x)$ exists and is equal to f(a).

< ロ > < 同 > < 三 > < 三 >

- f is continuous at an interior point c of D if lim_{x→c} f(x) exists and is equal to f(c).
- f is continuous at a left end-point a of D if $\lim_{x\to a^+} f(x)$ exists and is equal to f(a).
- f is continuous at a right end-point b of D if $\lim_{x\to b^-} f(x)$ exists and is equal to f(b).

< ロ > < 同 > < 三 > < 三 >

- f is continuous at an interior point c of D if lim_{x→c} f(x) exists and is equal to f(c).
- f is continuous at a left end-point a of D if $\lim_{x\to a^+} f(x)$ exists and is equal to f(a).
- f is continuous at a right end-point b of D if lim_{x→b⁻} f(x) exists and is equal to f(b).
- f is continuous at all isolated point of D.

A (B) > A (B) > A (B) >

The function f is continuous at all points in [0, 4] except at x = 1, x = 2 and x = 4.

<<p>(日)、

Definition For any (non-isolated) point c in the domain of f we say that:

- f is right-continuous at c if $\lim_{x\to c^+} f(x) = f(c)$;
- f is left-continuous at c if $\lim_{x\to c^-} f(x) = f(c)$;

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition For any (non-isolated) point c in the domain of f we say that:

- f is right-continuous at c if $\lim_{x\to c^+} f(x) = f(c)$;
- f is left-continuous at c if $\lim_{x\to c^-} f(x) = f(c)$;

It follows that f is continuous at an interior point c in its domain if and only if it is both right-continuous and left-continuous at c.

Definition If a function f is not continuous at a point $c \in \mathbb{R}$, we say that f is *discontinuous* at c. (Note that f is discontinuous at all points c which do not belong to its domain by definition!)

Example continued

Examples:

Bill Jackson

Calculus I

æ

The Limit Laws Theorem implies that an algebraic combination of two functions which are both continuous at the same point c, will also be continuous at c.

THEOREM 9 Propertie	s of Continuous Functions
If the functions f and g are are continuous at $x = c$.	continuous at $x = c$, then the following combinations
1. Sums:	f + g
2. Differences:	f - g
3. Products:	$f \cdot g$
4. Constant multiples:	$k \cdot f$, for any number k
5. Quotients:	f/g provided $g(c) \neq 0$
6. Powers:	$f^{r/s}$, provided it is defined on an open interval containing c, where r and s are integers

Special functions

It is easy to see that the functions f(x) = x, and g(x) = k for some constant k, are continuous at c for all $c \in \mathbb{R}$. We can now use the above properties of continuous functions to deduce:

Lemma

All polynomial and rational functions are continuous at c for all $c \in \mathbb{R}$ (provided the denominator of the rational function does not become zero at c).

Special functions

It is easy to see that the functions f(x) = x, and g(x) = k for some constant k, are continuous at c for all $c \in \mathbb{R}$. We can now use the above properties of continuous functions to deduce:

Lemma

All polynomial and rational functions are continuous at c for all $c \in \mathbb{R}$ (provided the denominator of the rational function does not become zero at c).

We can also show that trigonometric functions are continuous.

Lemma

The functions $\sin x$ and $\cos x$ are continuous at c for all $c \in \mathbb{R}$. The function $\tan x$ is continuous at c for all $c \in \mathbb{R} \setminus \{\pm \pi/2, \pm 3\pi/2, \pm 5\pi/2, \ldots\}$.

(日) (日) (日) (日)

Composition of continuous functions

・ロン ・回 と ・ ヨン ・ ヨン

크

Composition of continuous functions

Example: $h(x) = \sin(x^3 + \cos x)$ is continuous at c for all $c \in \mathbb{R}$. This follows since $h = g \circ f$ where $f(x) = x^3 + \cos x$ and $g(x) = \sin x$, and both f and g are continuous at all $c \in \mathbb{R}$.

() < </p>

Definition A function f is *continuous on an interval I* if f is continuous at every point of *I*. Similarly f is said to be a *continuous function* if f is continuous at every point of its domain.

Definition A function f is *continuous on an interval I* if f is continuous at every point of *I*. Similarly f is said to be a *continuous function* if f is continuous at every point of its domain. **Example:** We have seen that polynomial, rational and trigonometric functions are all continuous functions.

Warning

A continuous function need not be continuous at all points in $\mathbb R.$ This will only occur if its domain is equal to $\mathbb R.$

<<p>(日)、

→ ∃ →

Warning

A continuous function need not be continuous at all points in \mathbb{R} . This will only occur if its domain is equal to \mathbb{R} . **Example:** f(x) = 1/x.

- *f* is a continuous function since it is continuous at every point of its domain.
- Nevertheless, f has a discontinuity at x = 0 since f is not defined at x = 0.

Example: Show that $h(x) = \left| \frac{x \sin x}{x^2 + 2} \right|$ is continuous on $(-\infty, \infty)$.

・ロン ・回 と ・ ヨ と ・ ヨ と

크

Example: Show that $h(x) = \left| \frac{x \sin x}{x^2 + 2} \right|$ is continuous on $(-\infty, \infty)$.

• Note that $y = \sin x$ is continuous on $(-\infty, \infty)$.

・ロン ・回 と ・ ヨ と ・ ヨ と

Example: Show that $h(x) = \left| \frac{x \sin x}{x^2 + 2} \right|$ is continuous on $(-\infty, \infty)$.

• Note that $y = \sin x$ is continuous on $(-\infty, \infty)$.

• Deduce that
$$f(x) = \frac{x \sin x}{x^2 + 2}$$
 is continuous on $(-\infty, \infty)$.

・ロン ・回 と ・ ヨン ・ ヨン

Example: Show that $h(x) = \left| \frac{x \sin x}{x^2 + 2} \right|$ is continuous on $(-\infty, \infty)$.

- Note that $y = \sin x$ is continuous on $(-\infty, \infty)$.
- Deduce that $f(x) = \frac{x \sin x}{x^2 + 2}$ is continuous on $(-\infty, \infty)$.
- Show that g(x) = |x| is continuous on $(-\infty, \infty)$.

□ > < E > < E > -

Example: Show that $h(x) = \left| \frac{x \sin x}{x^2 + 2} \right|$ is continuous on $(-\infty, \infty)$.

- Note that $y = \sin x$ is continuous on $(-\infty, \infty)$.
- Deduce that $f(x) = \frac{x \sin x}{x^2 + 2}$ is continuous on $(-\infty, \infty)$.
- Show that g(x) = |x| is continuous on $(-\infty, \infty)$.
- Deduce that $h = g \circ f$ is continuous on $(-\infty, \infty)$.

Example: Show that $h(x) = \left| \frac{x \sin x}{x^2 + 2} \right|$ is continuous on $(-\infty, \infty)$.

- Note that $y = \sin x$ is continuous on $(-\infty, \infty)$.
- Deduce that $f(x) = \frac{x \sin x}{x^2 + 2}$ is continuous on $(-\infty, \infty)$.
- Show that g(x) = |x| is continuous on $(-\infty, \infty)$.
- Deduce that $h = g \circ f$ is continuous on $(-\infty, \infty)$.

Continuous extensions of functions - Example

 $f(x) = \frac{\sin x}{x}$

・ロン ・回 と ・ ヨ と ・ ヨ と

Continuous extensions of functions - Example

 $f(x) = \frac{\sin x}{x}$

The function f is defined and is continuous at every point $x \in \mathbb{R} \setminus \{0\}$. As $\lim_{x \to 0} \frac{\sin x}{x} = 1$, it makes sense to define a new function F by putting

$$F(x) = \left\{ egin{array}{cc} rac{\sin x}{x} & ext{ for } x
eq 0 \ 1 & ext{ for } x = 0 \end{array}
ight.$$

Then *F* will be defined and will be continuous at every point $x \in \mathbb{R}$.

Definition Suppose $f : D \to \mathbb{R}$ and that $\lim_{x \to c} f(x) = L$ for some $c \in \mathbb{R} \setminus D$. Define a new function $f : D \cup \{c\} \to \mathbb{R}$ by putting

$$F(x) = \begin{cases} f(x) & \text{if } x \neq c \\ L & \text{if } x = c \end{cases}$$

Then F is said to be the *continuous extension of* f(x) *to* c. Note that F is continuous at c since we have

$$\lim_{x\to c} F(x) = \lim_{x\to c} f(x) = L = F(c).$$

THEOREM 11 The Intermediate Value Theorem for Continuous Functions

A function y = f(x) that is continuous on a closed interval [a, b] takes on every value between f(a) and f(b). In other words, if y_0 is any value between f(a) and f(b), then $y_0 = f(c)$ for some c in [a, b].

<ロ> (日) (日) (日) (日) (日)

THEOREM 11 The Intermediate Value Theorem for Continuous Functions A function y = f(x) that is continuous on a closed interval [a, b] takes on every value between f(a) and f(b). In other words, if y_0 is any value between f(a) and f(b), then $y_0 = f(c)$ for some c in [a, b].

The geometrical interpretation of this theorem is that any horizontal line crossing the *y*-axis between f(a) and f(b) will cross the graph of y = f(x) at least once over the interval [a, b].

Instantaneous rates of change revisited

Example: Growth of fruit fly population

Basic idea:

- Determine the limit of the slopes of the *secants QP* as *Q* approaches *P*.
- Take this limit to be the instantaneous rate of change at P.

Another Example

Find the equation of the tangent to the parabola $y = x^2$ at the point P = (2, 4).

・ロン ・回 と ・ ヨ と ・ ヨ と

Slope and tangent lines

Definition The *slope* of the curve y = f(x) at the point $P = (x_0, y_0)$ is the number

$$m = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

provided this limit exists. The *tangent line* to the curve at P is the line through P with this slope.

Slope and tangent lines

Definition The *slope* of the curve y = f(x) at the point $P = (x_0, y_0)$ is the number

$$m = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

provided this limit exists. The *tangent line* to the curve at P is the line through P with this slope.

Finding the Tangent to the Curve y = f(x) at (x_0, y_0) 1. Calculate $f(x_0)$ and $f(x_0 + h)$. 2. Calculate the slope $m = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$. 3. If the limit exists, find the tangent line as $y = y_0 + m(x - x_0)$.

Find slope and tangent to y = 1/x at x = a when $a \neq 0$

・ロン ・回 と ・ ヨ と ・ ヨ と

크

Example

Find slope and tangent to y = 1/x at x = a when $a \neq 0$

<ロ> (日) (日) (日) (日) (日)

Definition Let $f : D \to \mathbb{R}$. The *derivative* of f is the function f' whose value at a point $c \in D$ is given by

$$f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h}$$

provided this limit exists. If f'(c) does exist, then we say that f is *differentiable* at c. If f'(x) exists for all $x \in D$, then we say that the function f is *differentiable*.

Definition Let $f : D \to \mathbb{R}$. The *derivative* of f is the function f' whose value at a point $c \in D$ is given by

$$f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h}$$

provided this limit exists. If f'(c) does exist, then we say that f is *differentiable* at c. If f'(x) exists for all $x \in D$, then we say that the function f is *differentiable*.

Example Find the derivative of $f(x) = \frac{x}{x-1}$.

Alternative formula for the derivative

From the definition, we have

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

() < </p>

Alternative formula for the derivative

From the definition, we have

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Putting z = x + h. Then $z \to x$ as $h \to 0$ and we have

$$f'(x) = \lim_{z \to x} \frac{f(z) - f(x)}{z - x}.$$

< ロ > < 同 > < 三 > < 三 >

From the definition, we have

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Putting z = x + h. Then $z \to x$ as $h \to 0$ and we have

$$f'(x) = \lim_{z \to x} \frac{f(z) - f(x)}{z - x}.$$

Example Differentiate $f(x) = \sqrt{x}$ by using the alternative formula for the derivative.

> < (20) < (20) < (20)</p>

In analogy to one-sided limits, we can define one-sided derivatives:

$$\lim_{h \to 0^{+}} \frac{f(x+h) - f(x)}{h}$$
 is the right-hand derivative at x
$$\lim_{h \to 0^{-}} \frac{f(x+h) - f(x)}{h}$$
 is the left-hand derivative at x

Then f is differentiable at x if and only if both one-sided derivatives exist and are equal.

In analogy to one-sided limits, we can define one-sided derivatives:

$$\lim_{h \to 0^{+}} \frac{f(x+h) - f(x)}{h} \quad \text{is the right-hand derivative at } x$$
$$\lim_{h \to 0^{-}} \frac{f(x+h) - f(x)}{h} \quad \text{is the left-hand derivative at } x$$

Then *f* is differentiable at *x* if and only if both one-sided derivatives exist and are equal. **Example:** Show that f(x) = |x| is not differentiable at x = 0.

[2009 exam question]

Theorem

If a function f has a derivative at x = c, then f is continuous at x = c.

크

Theorem

If a function f has a derivative at x = c, then f is continuous at x = c.

Caution: The converse of this theorem is *false*! Consider for example f(x) = |x|. This function is continuous at x = 0 but is not differentiable at x = 0.

(D) (A) (A) (A) (A)

Theorem

If a function f has a derivative at x = c, then f is continuous at x = c.

Caution: The converse of this theorem is *false*! Consider for example f(x) = |x|. This function is continuous at x = 0 but is not differentiable at x = 0.

Note: The theorem does imply that if a function is *discontinuous* at x = c, then it is *not differentiable* at x = c.

Alternative notation for differentiation

We often write
$$\frac{df}{dx}$$
 or $\frac{d}{dx}f(x)$ for $f'(x)$.

() < </p>

E

Alternative notation for differentiation

We often write
$$\frac{df}{dx}$$
 or $\frac{d}{dx}f(x)$ for $f'(x)$.
If $y = f(x)$ then we can write y' or $\frac{dy}{dx}$ instead of $f'(x)$.

() < </p>

E

We often write
$$\frac{df}{dx}$$
 or $\frac{d}{dx}f(x)$ for $f'(x)$.
If $y = f(x)$ then we can write y' or $\frac{dy}{dx}$ instead of $f'(x)$.

The $\frac{d}{dx}$ notation for differentiation was introduced in the late seventeenth century by the German mathematician Gottfried Wilhelm Liebniz and is referred to as *Liebniz notation*.

Rules for differentiation

Rule (Derivative of a Constant Function)

If f is a constant function, f(x) = c, then f is differentiable and

$$\frac{df}{dx}=\frac{d}{dx}(c)=0\;.$$

<ロ> (日) (日) (日) (日) (日)

Rules for differentiation

Rule (Derivative of a Constant Function)

If f is a constant function, f(x) = c, then f is differentiable and

$$\frac{df}{dx}=\frac{d}{dx}(c)=0\;.$$

Rule (Power Rule for Positive Integers)

If f is a power function, $f(x) = x^n$ for some $n \in \mathbb{N}$, then f is differentiable and

$$\frac{d}{dx}x^n = nx^{n-1}$$

伺 ト イヨト イヨト

Rules for differentiation

Rule (Derivative of a Constant Function)

If f is a constant function, f(x) = c, then f is differentiable and

$$\frac{df}{dx}=\frac{d}{dx}(c)=0\;.$$

Rule (Power Rule for Positive Integers)

If f is a power function, $f(x) = x^n$ for some $n \in \mathbb{N}$, then f is differentiable and

$$\frac{d}{dx}x^n = nx^{n-1}$$

Rule (Constant Multiple Rule)

If f is a differentiable function, and c is a constant, then cf is differentiable and

$$rac{d}{dx}(cf)=crac{df}{dx}$$
 .

Rule (Derivative Sum Rule)

If u and v are differentiable functions, then u + v is differentiable and

$$\frac{d}{dx}(u+v) = \frac{du}{dx} + \frac{dv}{dx}$$

Example: Differentiate $y = 3x^4 + 2$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Rule (Derivative Sum Rule)

If u and v are differentiable functions, then u + v is differentiable and

$$\frac{d}{dx}(u+v) = \frac{du}{dx} + \frac{dv}{dx}$$

Example: Differentiate $y = 3x^4 + 2$.

Rule (Derivative Product Rule)

If u and v are differentiable functions, then uv is differentiable and

$$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx} \, .$$

Example: Differentiate $y = (x^2 + 1)(x^3 + 3)$.

Rule (Derivative Sum Rule)

If u and v are differentiable functions, then u + v is differentiable and

$$\frac{d}{dx}(u+v) = \frac{du}{dx} + \frac{dv}{dx}$$

Example: Differentiate $y = 3x^4 + 2$.

Rule (Derivative Product Rule)

If u and v are differentiable functions, then uv is differentiable and

$$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx} \, .$$

Example: Differentiate $y = (x^2 + 1)(x^3 + 3)$.

Rule (Derivative Quotient Rule)

If u and v are differentiable functions, then u/v is differentiable and

$$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$

Example: Differentiate $y = \frac{t-2}{t^2+1}$.

(日) (部) (目) (日)

Rule (Derivative Quotient Rule)

If u and v are differentiable functions, then u/v is differentiable and

$$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$

Example: Differentiate
$$y = \frac{t-2}{t^2+1}$$
.

Rule (Power Rule for Negative Integers)

If $f(x) = x^n$ for some negative integer n, then f is differentiable and

$$\frac{d}{dx}x^n = nx^{n-1}$$

Example:
$$\frac{d}{dx}\left(\frac{1}{x^{11}}\right) = \frac{d}{dx}(x^{-11}) = -11x^{-12}$$

Definition Suppose f is differentiable function. If f' is also differentiable, then we call f'' = (f')' the second derivative of f. Similarly, if f'' is differentiable then we we call f''' = (f'')' the third derivative of f.

Definition Suppose f is differentiable function. If f' is also differentiable, then we call f'' = (f')' the second derivative of f. Similarly, if f'' is differentiable then we we call f''' = (f'')' the third derivative of f.

More generally, if f is differentiable n times for some $n \in \mathbb{N}$ then the *n*'th derivative, $f^{(n)}$, of f is defined recursively by putting $f^{(0)} = f$, and

$$f^{(n)} = \frac{df^{(n-1)}}{dx}$$

for $n \geq 1$.

Definition Suppose f is differentiable function. If f' is also differentiable, then we call f'' = (f')' the second derivative of f. Similarly, if f'' is differentiable then we we call f''' = (f'')' the third derivative of f.

More generally, if f is differentiable n times for some $n \in \mathbb{N}$ then the *n*'th derivative, $f^{(n)}$, of f is defined recursively by putting $f^{(0)} = f$, and

$$f^{(n)} = \frac{df^{(n-1)}}{dx}$$

for $n \ge 1$. **Example:** Find the first four derivatives of $f(x) = x^3$ and $g(x) = x^{-2}$.

- 4 同 6 4 日 6 4 日 6