MTH4100 Calculus I

Bill Jackson
School of Mathematical Sciences QMUL

Week 5, Semester 1, 2012

Continuity

Informally a function defined on an interval is continuous if we can sketch its graph in one continuous motion without lifting our pen from the paper. To give a more precise definition we first define what it means for a function to be continuous at a single point in its domain, and to do this we must distinguish between different kinds of points in the domain.

Interior points and end points

Definition Let $D \subset \mathbb{R}$ and $x \in D$. Then:

- x is an interior point of D if we have $x \in I$ for some open interval $I=(a, b) \subseteq D$;

Interior points and end points

Definition Let $D \subset \mathbb{R}$ and $x \in D$. Then:

- x is an interior point of D if we have $x \in I$ for some open interval $I=(a, b) \subseteq D$;
- x is a left end-point, respectively right end-point, of D if x is not an interior point of D and we have $x \in I$ for some half-closed interval $I=[x, b) \subseteq D$, respectively $I=(a, x] \subseteq D$;

Interior points and end points

Definition Let $D \subset \mathbb{R}$ and $x \in D$. Then:

- x is an interior point of D if we have $x \in I$ for some open interval $I=(a, b) \subseteq D$;
- x is a left end-point, respectively right end-point, of D if x is not an interior point of D and we have $x \in I$ for some half-closed interval $I=[x, b) \subseteq D$, respectively $I=(a, x] \subseteq D$;
- x is an isolated point of D if x is neither an interior point nor an end-point.

Interior points and end points

Definition Let $D \subset \mathbb{R}$ and $x \in D$. Then:

- x is an interior point of D if we have $x \in I$ for some open interval $I=(a, b) \subseteq D$;
- x is a left end-point, respectively right end-point, of D if x is not an interior point of D and we have $x \in I$ for some half-closed interval $I=[x, b) \subseteq D$, respectively $I=(a, x] \subseteq D$;
- x is an isolated point of D if x is neither an interior point nor an end-point.
Example: Let $D=[1,2] \cup(3,4] \cup\{5\}$. Then D has one left end-point, 1 ; two right endpoints 2,4 ; one isolated point 5 ; and all other points in D are interior points.

Continuity at a point

Definition Let f be a function with domain $D \subset \mathbb{R}$. Then:

- f is continuous at an interior point c of D if $\lim _{x \rightarrow c} f(x)$ exists and is equal to $f(c)$.

Continuity at a point

Definition Let f be a function with domain $D \subset \mathbb{R}$. Then:

- f is continuous at an interior point c of D if $\lim _{x \rightarrow c} f(x)$ exists and is equal to $f(c)$.
- f is continuous at a left end-point a of D if $\lim _{x \rightarrow a^{+}} f(x)$ exists and is equal to $f(a)$.

Continuity at a point

Definition Let f be a function with domain $D \subset \mathbb{R}$. Then:

- f is continuous at an interior point c of D if $\lim _{x \rightarrow c} f(x)$ exists and is equal to $f(c)$.
- f is continuous at a left end-point a of D if $\lim _{x \rightarrow a^{+}} f(x)$ exists and is equal to $f(a)$.
- f is continuous at a right end-point b of D if $\lim _{x \rightarrow b^{-}} f(x)$ exists and is equal to $f(b)$.

Continuity at a point

Definition Let f be a function with domain $D \subset \mathbb{R}$. Then:

- f is continuous at an interior point c of D if $\lim _{x \rightarrow c} f(x)$ exists and is equal to $f(c)$.
- f is continuous at a left end-point a of D if $\lim _{x \rightarrow a^{+}} f(x)$ exists and is equal to $f(a)$.
- f is continuous at a right end-point b of D if $\lim _{x \rightarrow b^{-}} f(x)$ exists and is equal to $f(b)$.
- f is continuous at all isolated point of D.

Example

The function f is continuous at all points in $[0,4]$ except at $x=1, x=2$ and $x=4$.

One-sided continuity at a point

Definition For any (non-isolated) point c in the domain of f we say that:

- f is right-continuous at c if $\lim _{x \rightarrow c^{+}} f(x)=f(c)$;
- f is left-continuous at c if $\lim _{x \rightarrow c^{-}} f(x)=f(c)$;

One-sided continuity at a point

Definition For any (non-isolated) point c in the domain of f we say that:

- f is right-continuous at c if $\lim _{x \rightarrow c^{+}} f(x)=f(c)$;
- f is left-continuous at c if $\lim _{x \rightarrow c^{-}} f(x)=f(c)$;

It follows that f is continuous at an interior point c in its domain if and only if it is both right-continuous and left-continuous at c.

Discontinuity at a point

Definition If a function f is not continuous at a point $c \in \mathbb{R}$, we say that f is discontinuous at c. (Note that f is discontinuous at all points c which do not belong to its domain by definition!)

Example continued

Examples:

(a)

(b)

(c)

(d)

(e)
(f)

Properties of continuous functions

The Limit Laws Theorem implies that an algebraic combination of two functions which are both continuous at the same point c, will also be continuous at c.

THEOREM 9 Properties of Continuous Functions

If the functions f and g are continuous at $x=c$, then the following combinations are continuous at $x=c$.

1. Sums:
$f+g$
2. Differences:
$f-g$
3. Products:
$f \cdot g$
4. Constant multiples:
$k \cdot f$, for any number k
5. Quotients:
f / g provided $g(c) \neq 0$
6. Powers:
$f^{r / s}$, provided it is defined on an open interval containing c, where r and s are integers

Special functions

It is easy to see that the functions $f(x)=x$, and $g(x)=k$ for some constant k, are continuous at c for all $c \in \mathbb{R}$. We can now use the above properties of continuous functions to deduce:

Lemma

All polynomial and rational functions are continuous at c for all $c \in \mathbb{R}$ (provided the denominator of the rational function does not become zero at c).

Special functions

It is easy to see that the functions $f(x)=x$, and $g(x)=k$ for some constant k, are continuous at c for all $c \in \mathbb{R}$. We can now use the above properties of continuous functions to deduce:

Lemma

All polynomial and rational functions are continuous at c for all $c \in \mathbb{R}$ (provided the denominator of the rational function does not become zero at c).

We can also show that trigonometric functions are continuous.

Lemma

The functions $\sin x$ and $\cos x$ are continuous at c for all $c \in \mathbb{R}$.
The function $\tan x$ is continuous at c for all
$c \in \mathbb{R} \backslash\{ \pm \pi / 2, \pm 3 \pi / 2, \pm 5 \pi / 2, \ldots\}$.

Composition of continuous functions

THEOREM 10 Composite of Continuous Functions

If f is continuous at c and g is continuous at $f(c)$, then the composite $g \circ f$ is continuous at c.

Composition of continuous functions

THEOREM 10 Composite of Continuous Functions

If f is continuous at c and g is continuous at $f(c)$, then the composite $g \circ f$ is continuous at c.

Example: $h(x)=\sin \left(x^{3}+\cos x\right)$ is continuous at c for all $c \in \mathbb{R}$. This follows since $h=g \circ f$ where $f(x)=x^{3}+\cos x$ and $g(x)=\sin x$, and both f and g are continuous at all $c \in \mathbb{R}$.

Continuous functions

Definition A function f is continuous on an interval l if f is continuous at every point of I. Similarly f is said to be a continuous function if f is continuous at every point of its domain.

Continuous functions

Definition A function f is continuous on an interval l if f is continuous at every point of I. Similarly f is said to be a continuous function if f is continuous at every point of its domain.
Example: We have seen that polynomial, rational and trigonometric functions are all continuous functions.

Warning

A continuous function need not be continuous at all points in \mathbb{R}. This will only occur if its domain is equal to \mathbb{R}.

Warning

A continuous function need not be continuous at all points in \mathbb{R}. This will only occur if its domain is equal to \mathbb{R}.
Example: $f(x)=1 / x$.

- f is a continuous function since it is continuous at every point of its domain.
- Nevertheless, f has a discontinuity at $x=0$ since f is not defined at $x=0$.

Example

Example: Show that $h(x)=\left|\frac{x \sin x}{x^{2}+2}\right|$ is continuous on $(-\infty, \infty)$.

Example

Example: Show that $h(x)=\left|\frac{x \sin x}{x^{2}+2}\right|$ is continuous on $(-\infty, \infty)$.

- Note that $y=\sin x$ is continuous on $(-\infty, \infty)$.

Example

Example: Show that $h(x)=\left|\frac{x \sin x}{x^{2}+2}\right|$ is continuous on $(-\infty, \infty)$.

- Note that $y=\sin x$ is continuous on $(-\infty, \infty)$.
- Deduce that $f(x)=\frac{x \sin x}{x^{2}+2}$ is continuous on $(-\infty, \infty)$.

Example

Example: Show that $h(x)=\left|\frac{x \sin x}{x^{2}+2}\right|$ is continuous on $(-\infty, \infty)$.

- Note that $y=\sin x$ is continuous on $(-\infty, \infty)$.
- Deduce that $f(x)=\frac{x \sin x}{x^{2}+2}$ is continuous on $(-\infty, \infty)$.
- Show that $g(x)=|x|$ is continuous on $(-\infty, \infty)$.

Example

Example: Show that $h(x)=\left|\frac{x \sin x}{x^{2}+2}\right|$ is continuous on $(-\infty, \infty)$.

- Note that $y=\sin x$ is continuous on $(-\infty, \infty)$.
- Deduce that $f(x)=\frac{x \sin x}{x^{2}+2}$ is continuous on $(-\infty, \infty)$.
- Show that $g(x)=|x|$ is continuous on $(-\infty, \infty)$.
- Deduce that $h=g \circ f$ is continuous on $(-\infty, \infty)$.

Example

Example: Show that $h(x)=\left|\frac{x \sin x}{x^{2}+2}\right|$ is continuous on $(-\infty, \infty)$.

- Note that $y=\sin x$ is continuous on $(-\infty, \infty)$.
- Deduce that $f(x)=\frac{x \sin x}{x^{2}+2}$ is continuous on $(-\infty, \infty)$.
- Show that $g(x)=|x|$ is continuous on $(-\infty, \infty)$.
- Deduce that $h=g \circ f$ is continuous on $(-\infty, \infty)$.

Continuous extensions of functions - Example

$$
f(x)=\frac{\sin x}{x}
$$

Continuous extensions of functions - Example

$f(x)=\frac{\sin x}{x}$

NOT TO SCALE
The function f is defined and is continuous at every point $x \in \mathbb{R} \backslash\{0\}$. As $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$, it makes sense to define a new function F by putting

$$
F(x)=\left\{\begin{array}{cl}
\frac{\sin x}{x} & \text { for } x \neq 0 \\
1 & \text { for } x=0
\end{array}\right.
$$

Then F will be defined and will be continuous at every point $x \in \mathbb{R}$.

Continuous extensions of functions

Definition Suppose $f: D \rightarrow \mathbb{R}$ and that $\lim _{x \rightarrow c} f(x)=L$ for some $c \in \mathbb{R} \backslash D$. Define a new function $f: D \cup\{c\} \rightarrow \mathbb{R}$ by putting

$$
F(x)= \begin{cases}f(x) & \text { if } x \neq c \\ L & \text { if } x=c\end{cases}
$$

Then F is said to be the continuous extension of $f(x)$ to c. Note that F is continuous at c since we have

$$
\lim _{x \rightarrow c} F(x)=\lim _{x \rightarrow c} f(x)=L=F(c) .
$$

THEOREM 11 The Intermediate Value Theorem for Continuous Functions

A function $y=f(x)$ that is continuous on a closed interval $[a, b]$ takes on every value between $f(a)$ and $f(b)$. In other words, if y_{0} is any value between $f(a)$ and $f(b)$, then $y_{0}=f(c)$ for some c in $[a, b]$.

THEOREM 11 The Intermediate Value Theorem for Continuous Functions

A function $y=f(x)$ that is continuous on a closed interval $[a, b]$ takes on every value between $f(a)$ and $f(b)$. In other words, if y_{0} is any value between $f(a)$ and $f(b)$, then $y_{0}=f(c)$ for some c in $[a, b]$.

The geometrical interpretation of this theorem is that any horizontal line crossing the y-axis between $f(a)$ and $f(b)$ will cross the graph of $y=f(x)$ at least once over the interval $[a, b]$.

Instantaneous rates of change revisited

Example: Growth of fruit fly population

Q	Slope of $P Q=\Delta p / \Delta t$ (flies / day)
$(45,340)$	$\frac{340-150}{45-23} \approx 8.6$
$(40,330)$	$\frac{330-150}{40-23} \approx 10.6$
$(35,310)$	$\frac{310-150}{35-23} \approx 13.3$
$(30,265)$	$\frac{265-150}{30-23} \approx 16.4$

Basic idea:

- Determine the limit of the slopes of the secants $Q P$ as Q approaches P.
- Take this limit to be the instantaneous rate of change at P.

Another Example

Find the equation of the tangent to the parabola $y=x^{2}$ at the point $P=(2,4)$.

Slope and tangent lines

Definition The slope of the curve $y=f(x)$ at the point $P=\left(x_{0}, y_{0}\right)$ is the number

$$
m=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
$$

provided this limit exists. The tangent line to the curve at P is the line through P with this slope.

Slope and tangent lines

Definition The slope of the curve $y=f(x)$ at the point $P=\left(x_{0}, y_{0}\right)$ is the number

$$
m=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
$$

provided this limit exists. The tangent line to the curve at P is the line through P with this slope.

Finding the Tangent to the Curve $y=f(x)$ at $\left(x_{0}, y_{0}\right)$

1. Calculate $f\left(x_{0}\right)$ and $f\left(x_{0}+h\right)$.
2. Calculate the slope

$$
m=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
$$

3. If the limit exists, find the tangent line as

$$
y=y_{0}+m\left(x-x_{0}\right) .
$$

Example

Find slope and tangent to $y=1 / x$ at $x=a$ when $a \neq 0$

Example

Find slope and tangent to $y=1 / x$ at $x=a$ when $a \neq 0$

Derivatives

Definition Let $f: D \rightarrow \mathbb{R}$. The derivative of f is the function f^{\prime} whose value at a point $c \in D$ is given by

$$
f^{\prime}(c)=\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}
$$

provided this limit exists. If $f^{\prime}(c)$ does exist, then we say that f is differentiable at c. If $f^{\prime}(x)$ exists for all $x \in D$, then we say that the function f is differentiable.

Derivatives

Definition Let $f: D \rightarrow \mathbb{R}$. The derivative of f is the function f^{\prime} whose value at a point $c \in D$ is given by

$$
f^{\prime}(c)=\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}
$$

provided this limit exists. If $f^{\prime}(c)$ does exist, then we say that f is differentiable at c. If $f^{\prime}(x)$ exists for all $x \in D$, then we say that the function f is differentiable.
Example Find the derivative of $f(x)=\frac{x}{x-1}$.

Alternative formula for the derivative

From the definition, we have

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Alternative formula for the derivative

From the definition, we have

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Putting $z=x+h$. Then $z \rightarrow x$ as $h \rightarrow 0$ and we have

$$
f^{\prime}(x)=\lim _{z \rightarrow x} \frac{f(z)-f(x)}{z-x}
$$

Alternative formula for the derivative

From the definition, we have

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Putting $z=x+h$. Then $z \rightarrow x$ as $h \rightarrow 0$ and we have

$$
f^{\prime}(x)=\lim _{z \rightarrow x} \frac{f(z)-f(x)}{z-x}
$$

Example Differentiate $f(x)=\sqrt{x}$ by using the alternative formula for the derivative.

One-sided derivatives

In analogy to one-sided limits, we can define one-sided derivatives:

$$
\begin{array}{ll}
\lim _{h \rightarrow 0^{+}} \frac{f(x+h)-f(x)}{h} & \text { is the right-hand derivative at } x \\
\lim _{h \rightarrow 0^{-}} \frac{f(x+h)-f(x)}{h} & \text { is the left-hand derivative at } x
\end{array}
$$

Then f is differentiable at x if and only if both one-sided derivatives exist and are equal.

One-sided derivatives

In analogy to one-sided limits, we can define one-sided derivatives:

$$
\begin{array}{ll}
\lim _{h \rightarrow 0^{+}} \frac{f(x+h)-f(x)}{h} & \text { is the right-hand derivative at } x \\
\lim _{h \rightarrow 0^{-}} \frac{f(x+h)-f(x)}{h} & \text { is the left-hand derivative at } x
\end{array}
$$

Then f is differentiable at x if and only if both one-sided derivatives exist and are equal.
Example: Show that $f(x)=|x|$ is not differentiable at $x=0$. [2009 exam question]

Differentiation and Continuity

> Theorem
> If a function f has a derivative at $x=c$, then f is continuous at $x=c$.

Differentiation and Continuity

Theorem

If a function f has a derivative at $x=c$, then f is continuous at $x=c$.

Caution: The converse of this theorem is false! Consider for example $f(x)=|x|$. This function is continuous at $x=0$ but is not differentiable at $x=0$.

Differentiation and Continuity

Theorem

If a function f has a derivative at $x=c$, then f is continuous at $x=c$.

Caution: The converse of this theorem is false! Consider for example $f(x)=|x|$. This function is continuous at $x=0$ but is not differentiable at $x=0$.

Note: The theorem does imply that if a function is discontinuous at $x=c$, then it is not differentiable at $x=c$.

Alternative notation for differentiation

We often write $\frac{d f}{d x}$ or $\frac{d}{d x} f(x)$ for $f^{\prime}(x)$.

Alternative notation for differentiation

We often write $\frac{d f}{d x}$ or $\frac{d}{d x} f(x)$ for $f^{\prime}(x)$.
If $y=f(x)$ then we can write y^{\prime} or $\frac{d y}{d x}$ instead of $f^{\prime}(x)$.

Alternative notation for differentiation

We often write $\frac{d f}{d x}$ or $\frac{d}{d x} f(x)$ for $f^{\prime}(x)$.
If $y=f(x)$ then we can write y^{\prime} or $\frac{d y}{d x}$ instead of $f^{\prime}(x)$.
The $\frac{d}{d x}$ notation for differentiation was introduced in the late seventeenth century by the German mathematician Gottfried Wilhelm Liebniz and is referred to as Liebniz notation.

Rules for differentiation

Rule (Derivative of a Constant Function)
If f is a constant function, $f(x)=c$, then f is differentiable and

$$
\frac{d f}{d x}=\frac{d}{d x}(c)=0 .
$$

Rules for differentiation

Rule (Derivative of a Constant Function)

If f is a constant function, $f(x)=c$, then f is differentiable and

$$
\frac{d f}{d x}=\frac{d}{d x}(c)=0
$$

Rule (Power Rule for Positive Integers)

If f is a power function, $f(x)=x^{n}$ for some $n \in \mathbb{N}$, then f is differentiable and

$$
\frac{d}{d x} x^{n}=n x^{n-1}
$$

Rules for differentiation

Rule (Derivative of a Constant Function)

If f is a constant function, $f(x)=c$, then f is differentiable and

$$
\frac{d f}{d x}=\frac{d}{d x}(c)=0
$$

Rule (Power Rule for Positive Integers)

If f is a power function, $f(x)=x^{n}$ for some $n \in \mathbb{N}$, then f is differentiable and

$$
\frac{d}{d x} x^{n}=n x^{n-1}
$$

Rule (Constant Multiple Rule)

If f is a differentiable function, and c is a constant, then cf is differentiable and

$$
\frac{d}{d x}(c f)=c \frac{d f}{d x} .
$$

Rules for differentiation - continued

Rule (Derivative Sum Rule)

If u and v are differentiable functions, then $u+v$ is differentiable and

$$
\frac{d}{d x}(u+v)=\frac{d u}{d x}+\frac{d v}{d x}
$$

Example: Differentiate $y=3 x^{4}+2$.

Rules for differentiation - continued

Rule (Derivative Sum Rule)

If u and v are differentiable functions, then $u+v$ is differentiable and

$$
\frac{d}{d x}(u+v)=\frac{d u}{d x}+\frac{d v}{d x}
$$

Example: Differentiate $y=3 x^{4}+2$.

Rule (Derivative Product Rule)

If u and v are differentiable functions, then $u v$ is differentiable and

$$
\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}
$$

Example: Differentiate $y=\left(x^{2}+1\right)\left(x^{3}+3\right)$.

Rules for differentiation - continued

Rule (Derivative Sum Rule)

If u and v are differentiable functions, then $u+v$ is differentiable and

$$
\frac{d}{d x}(u+v)=\frac{d u}{d x}+\frac{d v}{d x}
$$

Example: Differentiate $y=3 x^{4}+2$.

Rule (Derivative Product Rule)

If u and v are differentiable functions, then $u v$ is differentiable and

$$
\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}
$$

Example: Differentiate $y=\left(x^{2}+1\right)\left(x^{3}+3\right)$.

Rules for differentiation - continued

Rule (Derivative Quotient Rule)

If u and v are differentiable functions, then u / v is differentiable and

$$
\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}
$$

Example: Differentiate $y=\frac{t-2}{t^{2}+1}$.

Rules for differentiation - continued

Rule (Derivative Quotient Rule)

If u and v are differentiable functions, then u / v is differentiable and

$$
\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}
$$

Example: Differentiate $y=\frac{t-2}{t^{2}+1}$.

Rule (Power Rule for Negative Integers)

If $f(x)=x^{n}$ for some negative integer n, then f is differentiable and

$$
\frac{d}{d x} x^{n}=n x^{n-1}
$$

Example: $\frac{d}{d x}\left(\frac{1}{x^{11}}\right)=\frac{d}{d x}\left(x^{-11}\right)=-11 x^{-12}$.

Higher-order derivatives

Definition Suppose f is differentiable function. If f^{\prime} is also differentiable, then we call $f^{\prime \prime}=\left(f^{\prime}\right)^{\prime}$ the second derivative of f. Similarly, if $f^{\prime \prime}$ is differentiable then we we call $f^{\prime \prime \prime}=\left(f^{\prime \prime}\right)^{\prime}$ the third derivative of f.

Higher-order derivatives

Definition Suppose f is differentiable function. If f^{\prime} is also differentiable, then we call $f^{\prime \prime}=\left(f^{\prime}\right)^{\prime}$ the second derivative of f. Similarly, if $f^{\prime \prime}$ is differentiable then we we call $f^{\prime \prime \prime}=\left(f^{\prime \prime}\right)^{\prime}$ the third derivative of f.
More generally, if f is differentiable n times for some $n \in \mathbb{N}$ then the n 'th derivative, $f^{(n)}$, of f is defined recursively by putting $f^{(0)}=f$, and

$$
f^{(n)}=\frac{d f^{(n-1)}}{d x}
$$

for $n \geq 1$.

Higher-order derivatives

Definition Suppose f is differentiable function. If f^{\prime} is also differentiable, then we call $f^{\prime \prime}=\left(f^{\prime}\right)^{\prime}$ the second derivative of f. Similarly, if $f^{\prime \prime}$ is differentiable then we we call $f^{\prime \prime \prime}=\left(f^{\prime \prime}\right)^{\prime}$ the third derivative of f.
More generally, if f is differentiable n times for some $n \in \mathbb{N}$ then the n 'th derivative, $f^{(n)}$, of f is defined recursively by putting $f^{(0)}=f$, and

$$
f^{(n)}=\frac{d f^{(n-1)}}{d x}
$$

for $n \geq 1$.
Example: Find the first four derivatives of $f(x)=x^{3}$ and $g(x)=x^{-2}$.

