
 Queen Mary University of London

MTH4100 Calculus I

Lecture notes for Week 5
Thomas' Calculus, Sections 2.4 to 2.6

Prof Bill Jackson

School of Mathematical Sciences
Queen Mary University of London

Autumn 2012

Continuity

Informally a function defined on an interval is continuous if we can sketch its graph in one continuous motion without lifting our pen from the paper. To give a more precise definition we first define what it means for a function to be continuous at a single point in its domain, and to do this we must distinguish between different kinds of points in the domain.
Definition Let $D \subset \mathbb{R}$ and $x \in D$. Then:

- x is an interior point of D if we have $x \in I$ for some open interval $I=(a, b) \subseteq D$;
- x is a left end-point (respectively right end-point of D) if x is not an interior point of D and we have $x \in I$ for some half-closed interval $I=[x, b) \subseteq D$ (respectively $I=(a, x] \subseteq D) ;$
- x is an isolated point of D if x is neither an interior point nor an end-point.

Example: Let $D=[1,2] \cup(3,4] \cup\{5\}$. Then D has one left end-point, 1 ; two right endpoints 2,4 ; one isolated point 5 ; and all other points in D are interior points.
We can now define continuity at a point:
Definition Let f be a function with domain $D \subset \mathbb{R}$. Then:

- f is continuous at an interior point c of D if $\lim _{x \rightarrow c} f(x)$ exists and is equal to $f(c)$.
- f is continuous at a left end-point a of D if $\lim _{x \rightarrow a^{+}} f(x)$ exists and is equal to $f(a)$.
- f is continuous at a right end-point b of D if $\lim _{x \rightarrow b^{-}} f(x)$ exists and is equal to $f(b)$.
- f is continuous at every isolated point of $D .{ }^{1}$

Example: $f:[0,4] \rightarrow \mathbb{R}$

The function f is continuous at all points in $[0,4]$ except at $x=1, x=2$ and $x=4$ since:

- $\lim _{x \rightarrow 1} f(x)$ does not exist;
- $\lim _{x \rightarrow 2} f(x)=1 \neq f(2)$;
- $\lim _{x \rightarrow 4^{-}} f(x)=1 \neq f(4)$.

[^0]We can also define 'one-sided continuity'. For any (non-isolated) point c in the domain of f we say that:

- f is right-continuous at c if $\lim _{x \rightarrow c^{+}} f(x)=f(c)$;
- f is left-continuous at c if $\lim _{x \rightarrow c^{-}} f(x)=f(c)$;

It follows that f is continuous at an interior point c in its domain if and only if it is both right-continuous and left-continuous at c.
If a function f is not continuous at a point $c \in \mathbb{R}$, we say that f is discontinuous at c. Note that f is discontinuous at all points c which do not belong to its domain by definition.

Examples: Continuity and discontinuity at $x=0$.

(a)
continuous

(b)

(c)

(d)
not continuous
jump discontinuity

infinite discontinuity
oscillating discontinuity
Note We can easily repair the discontinuity at $x=0$ in cases (b) and (c) be (re)defining $f(0)$ as in (a). There is no easy way to repair the discontinuity at $x=0$ in (d), (e), and (f).

The Limit Laws Theorem implies that an algebraic combination of two functions which are both continuous at the same point c, will also be continuous at c.

THEOREM 9 Properties of Continuous Functions
If the functions f and g are continuous at $x=c$, then the following combinations are continuous at $x=c$.

1. Sums:
$f+g$
2. Differences:
$f-g$
3. Products:
$f \cdot g$
4. Constant multiples:
$k \cdot f$, for any number k
5. Quotients:
f / g provided $g(c) \neq 0$
6. Powers:
$f^{r / s}$, provided it is defined on an open interval containing c, where r and s are integers

Remark: It is easy to see that the functions $f(x)=x$, and $g(x)=k$ for some constant k, are continuous at c for all $c \in \mathbb{R}$. We can now use the above properties of continuous functions to deduce that all polynomial and rational functions are continuous at c for all $c \in \mathbb{R}$ (provided the denominator of the rational function does not become zero at c). We can also show that trigonometric functions are continuous.

Lemma 1 The functions $\sin x$ and $\cos x$ are continuous at c for all $c \in \mathbb{R}$. The function $\tan x$ is continuous at c for all $c \in \mathbb{R} \backslash\{ \pm \pi / 2, \pm 3 \pi / 2, \pm 5 \pi / 2, \ldots\}$.

Proof We have

$$
\begin{aligned}
\lim _{x \rightarrow c} \sin x & \left.=\lim _{h \rightarrow 0} \sin (c+h) \quad \quad \text { [substituting } h=x-c\right] \\
& =\lim _{h \rightarrow 0}(\sin c \cos h+\cos c \sin h) \\
& =\sin c \lim _{h \rightarrow 0}(\cos h)+\cos c \lim _{h \rightarrow 0}(\sin h) \\
& =\sin c \quad\left[\text { since } \lim _{h \rightarrow 0}(\cos h)=1 \text { and } \lim _{h \rightarrow 0}(\sin h)=0\right]
\end{aligned}
$$

A similar proof works for $\cos x$ (Check this!). We can now deduce that $\tan x$ is continuous at $x=c$ whenever $\cos c \neq 0$ by using $\tan x=\sin x / \cos x$.

We next state a result which says that compositions of continuous functions are continuous.

THEOREM 10 Composite of Continuous Functions

If f is continuous at c and g is continuous at $f(c)$, then the composite $g \circ f$ is continuous at c.

Example: $h(x)=\sin \left(x^{3}+\cos x\right)$ is continuous at c for all $c \in \mathbb{R}$. This follows since $h=g \circ f$ where $f(x)=x^{3}+\cos x$ and $g(x)=\sin x$, and both f and g are continuous at c for all $c \in \mathbb{R}$.
Definition A function f is continuous on an interval I if f is continuous at every point of I. Similarly f is said to be a continuous function if f is continuous at every point of its domain.
Example: We have seen that polynomial, rational and trigonometric functions are all continuous functions.

Note that a continuous function need not be continuous at all points in \mathbb{R}. This will only occur if its domain is equal to \mathbb{R}.
Example: $f(x)=1 / x$.

- f is a continuous function since it is continuous at every point of its domain.
- Nevertheless, f has a discontinuity at $x=0$ since f is not defined at $x=0$.

Example: Show that $h(x)=\left|\frac{x \sin x}{x^{2}+2}\right|$ is continuous on $(-\infty, \infty)$.

- Note that $y=\sin x$ is continuous on $(-\infty, \infty)$.
- Deduce that $f(x)=\frac{x \sin x}{x^{2}+2}$ is continuous on $(-\infty, \infty)$.
- Show that $g(x)=|x|$ is continuous on $(-\infty, \infty)$.
- Deduce that $h=g \circ f$ is continuous on $(-\infty, \infty)$.
$y=\left|\frac{x \sin x}{x^{2}+2}\right|$

Continuous extensions of functions

Example: $f(x)=\frac{\sin x}{x}$

NOT TO SCALE
The function f is defined and is continuous at every point $x \in \mathbb{R} \backslash\{0\}$. As $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$, it makes sense to define a new function F by putting

$$
F(x)=\left\{\begin{array}{cc}
\frac{\sin x}{x} & \text { for } x \neq 0 \\
1 & \text { for } x=0
\end{array}\right.
$$

Then F will be defined and will be continuous at every point $x \in \mathbb{R}$.
Definition Suppose $f: D \rightarrow \mathbb{R}$ and that $\lim _{x \rightarrow c} f(x)=L$ for some $c \in \mathbb{R} \backslash D$. Define a new function $f: D \cup\{c\} \rightarrow \mathbb{R}$ by putting

$$
F(x)= \begin{cases}f(x) & \text { if } x \neq c \\ L & \text { if } x=c\end{cases}
$$

Then F is said to be the continuous extension of $f(x)$ to c. (Note that F is continuous at c since we have $\lim _{x \rightarrow c} F(x)=\lim _{x \rightarrow c} f(x)=L=F(c)$.

The Intermediate value theorem

This result tells us that whenever a continuous function takes on two values, it must take on all the values in between.

THEOREM 11 The Intermediate Value Theorem for Continuous Functions

A function $y=f(x)$ that is continuous on a closed interval $[a, b]$ takes on every value between $f(a)$ and $f(b)$. In other words, if y_{0} is any value between $f(a)$ and $f(b)$, then $y_{0}=f(c)$ for some c in $[a, b]$.

The geometrical interpretation of this theorem is that any horizontal line crossing the y-axis between $f(a)$ and $f(b)$ will cross the graph of $y=f(x)$ at least once over the interval $[a, b]$. Note that continuity is essential: if f is discontinuous at some point in the interval, then the function may "jump" and miss some values.

Differentiation

Recall our discussion of average and instantaneous rates of change.

Example: Growth of fruit fly population

\boldsymbol{Q}	Slope of $P Q=\Delta p / \Delta t$ (flies $/$ day $)$
$(45,340)$	$\frac{340-150}{45-23} \approx 8.6$
$(40,330)$	$\frac{330-150}{40-23} \approx 10.6$
$(35,310)$	$\frac{310-150}{35-23} \approx 13.3$
$(30,265)$	$\frac{265-150}{30-23} \approx 16.4$

Basic idea:

- Determine the limit of the slopes of the secants ${ }^{2} Q P$ as Q approaches P.

[^1]- Take this limit to be the instantaneous rate of change at P.

Example: Find the equation of the tangent to the parabola $y=x^{2}$ at the point $P=(2,4)$.

- Choose a point $Q=\left(2+h,(2+h)^{2}\right)$ on the parabola a horizontal distance $h \neq 0$ away from P.
- The secant $P Q$ has slope

$$
\frac{\Delta y}{\Delta x}=\frac{(2+h)^{2}-2^{2}}{(2+h)-2}=\frac{4+4 h+h^{2}-4}{h}=4+h .
$$

- As Q approaches P, h approaches 0 . Hence

$$
m=\lim _{h \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{h \rightarrow 0}(4+h)=4
$$

is the parabola's slope at P.

- The equation of the tangent through P is $y=y_{1}+m\left(x-x_{1}\right)$ where $P=\left(x_{1}, y_{1}\right)=(2,4)$ and $m=4$. This gives $y=4+4(x-2)=4 x-4$.

Summary:

NOT TO SCALE
This approach generalises to arbitrary curves and arbitrary points:
Definition The slope of the curve $y=f(x)$ at the point $P=\left(x_{0}, y_{0}\right)$ is the number

$$
m=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
$$

provided this limit exists. The tangent line to the curve at P is the line through P with this slope.

Finding the Tangent to the Curve $y=f(x)$ at $\left(x_{0}, y_{0}\right)$

1. Calculate $f\left(x_{0}\right)$ and $f\left(x_{0}+h\right)$.
2. Calculate the slope

$$
m=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h} .
$$

3. If the limit exists, find the tangent line as

$$
y=y_{0}+m\left(x-x_{0}\right) .
$$

Example: Find slope and tangent to $y=1 / x$ at $x=a$ when $a \neq 0$

1. $f(a)=\frac{1}{a}, f(a+h)=\frac{1}{a+h}$
2. slope:

$$
\begin{aligned}
m & =\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{1}{a+h}-\frac{1}{a}}{h} \\
& =\lim _{h \rightarrow 0} \frac{a-(a+h)}{h \cdot a(a+h)} \\
& =\lim _{h \rightarrow 0} \frac{-1}{a(a+h)}=-\frac{1}{a^{2}}
\end{aligned}
$$

3. tangent line at $(a, 1 / a): y=\frac{1}{a}+\left(-\frac{1}{a^{2}}\right)(x-a)=\frac{2}{a}-\frac{x}{a^{2}}$.

Definition Let $f: D \rightarrow \mathbb{R}$. The derivative of f is the function f^{\prime} whose value at a point $c \in D$ is given by

$$
f^{\prime}(c)=\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}
$$

provided this limit exists. If $f^{\prime}(c)$ does exist, then we say that f is differentiable at c. If $f^{\prime}(x)$ exists for all $x \in D$, then we say that the function f is differentiable.
We can obtain an alternative formula for $f^{\prime}(x)$ by putting $z=x+h$. Then $z \rightarrow x$ as $h \rightarrow 0$ and we have

$$
f^{\prime}(x)=\lim _{z \rightarrow x} \frac{f(z)-f(x)}{z-x} .
$$

Alternative notations: We often write $\frac{d f}{d x}$ or $\frac{d}{d x} f(x)$ for $f^{\prime}(x)$. Furthermore, if $y=f(x)$ then we write y^{\prime} or $\frac{d y}{d x}$ instead of $f^{\prime}(x) .^{3}$
Calculating a derivative is called differentiation ("derivation" is something else!).
Example: Differentiate from first principles $f(x)=\frac{x}{x-1}$.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{x+h}{x+h-1}-\frac{x}{x-1}}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)(x-1)-x(x+h-1)}{h(x+h-1)(x-1)} \\
& =\lim _{h \rightarrow 0} \frac{-h}{h(x+h-1)(x-1)} \\
& =-\frac{1}{(x-1)^{2}}
\end{aligned}
$$

[^2]Example: Differentiate $f(x)=\sqrt{x}$ by using the alternative formula for derivatives.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{z \rightarrow x} \frac{f(z)-f(x)}{z-x} \\
& =\lim _{z \rightarrow x} \frac{\sqrt{z}-\sqrt{x}}{z-x} \\
& =\lim _{z \rightarrow x} \frac{\sqrt{z}-\sqrt{x}}{(\sqrt{z}-\sqrt{x})(\sqrt{z}+\sqrt{x})} \\
& =\lim _{z \rightarrow x} \frac{1}{\sqrt{z}+\sqrt{x}} \\
& =\frac{1}{2 \sqrt{x}}
\end{aligned}
$$

One-sided derivatives: In analogy to one-sided limits, we can define one-sided derivatives:

$$
\begin{array}{ll}
\lim _{h \rightarrow 0^{+}} \frac{f(x+h)-f(x)}{h} & \text { is the right-hand derivative at } x \\
\lim _{h \rightarrow 0^{-}} \frac{f(x+h)-f(x)}{h} & \text { is the left-hand derivative at } x
\end{array}
$$

Then:
f is differentiable at x if and only if both one-sided derivatives exist and are equal.
Example: Show that $f(x)=|x|$ is not differentiable at $x=0 . \quad$ [2009 exam question]

- right-hand derivative at $x=0$:

$$
\lim _{h \rightarrow 0^{+}} \frac{|0+h|-|0|}{h}=\lim _{h \rightarrow 0^{+}} \frac{|h|}{h}=\lim _{h \rightarrow 0^{+}} 1=1
$$

- left-hand derivative at $x=0$:

$$
\lim _{h \rightarrow 0^{-}} \frac{|0+h|-|0|}{h}=\lim _{h \rightarrow 0^{-}} \frac{|h|}{h}=\lim _{h \rightarrow 0^{-}}(-1)=-1
$$

Since the right-hand and left-hand derivatives differ the limit does not exist.
Theorem 1 If f has a derivative at $x=c$, then f is continuous at $x=c$.
Proof: Trick: For $h \neq 0$, we have

$$
f(c+h)=f(c)+\frac{f(c+h)-f(c)}{h} h
$$

By assumption, $\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}=f^{\prime}(c)$. We also have $\lim _{h \rightarrow 0} f(c)=f(c)$ and $\lim _{h \rightarrow 0} h=0$. Hence, by the Limit Laws,

$$
\lim _{h \rightarrow 0} f(c+h)=f(c)+f^{\prime}(c) \cdot 0=f(c) .
$$

Thus f is continuous at $x=c$.
Caution: The converse of this theorem is false! Consider for example $f(x)=|x|$. This function is continuous at $x=0$ but is not differentiable at $x=0$.
Note: The theorem does imply that if a function is discontinuous at $x=c$, then it is not differentiable at $x=c$.

Rules for Differentiation

The following rules are useful for working out derivatives. We will prove one them. See Thomas, Section 3.2, for proofs of the others.

Rule 1 (Derivative of a Constant Function) If f is a constant function, $f(x)=c$, then f is differentiable and

$$
\frac{d f}{d x}=\frac{d}{d x}(c)=0 .
$$

Rule 2 (Power Rule for Positive Integers) If f is a power function, $f(x)=x^{n}$ for some $n \in \mathbb{N}$, then f is differentiable and

$$
\frac{d}{d x} x^{n}=n x^{n-1}
$$

Rule 3 (Constant Multiple Rule) If f is a differentiable function, and c is a constant, then cf is differentiable and

$$
\frac{d}{d x}(c f)=c \frac{d f}{d x} .
$$

Rule 4 (Derivative Sum Rule) If u and v are differentiable functions, then $u+v$ is differentiable and

$$
\frac{d}{d x}(u+v)=\frac{d u}{d x}+\frac{d v}{d x} .
$$

Example: Differentiate $y=3 x^{4}+2$.

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x}\left(3 x^{4}+2\right) \\
& =\frac{d}{d x}\left(3 x^{4}\right)+\frac{d}{d x}(2) \quad(\text { by rule } 4) \\
& \left.=3 \frac{d}{d x}\left(x^{4}\right)+0 \quad \text { by rules } 1,3\right) \\
& =3 \cdot 4 x^{3} \quad(\text { by rule } 2) \\
& =12 x^{3}
\end{aligned}
$$

Rule 5 (Derivative Product Rule) If u and v are differentiable functions, then $u v$ is differentiable and

$$
\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x} .
$$

Proof We have

$$
\begin{aligned}
\frac{u(x+h) v(x+h)-u(x) v(x)}{h} & =\frac{u(x+h) v(x+h)-u(x+h) v(x)+u(x+h) v(x)-u(x) v(x)}{h} \\
& =\frac{u(x+h)[v(x+h)-v(x)]}{h}+\frac{v(x)[u(x+h)-u(x)]}{h}
\end{aligned}
$$

Since u and v are differentiable, $\lim _{h \rightarrow 0} \frac{u(x+h)-u(x)}{h}=\frac{d u}{d x}$ and $\lim _{h \rightarrow 0} \frac{v(x+h)-v(x)}{h}=\frac{d v}{d x}$. Since u is differentiable, it is continuous and hence $\lim _{h \rightarrow 0} u(x+h)=u(x)$. We also have $\lim _{h \rightarrow 0} u(x)=u(x)$. The Limit Laws now give

$$
\begin{aligned}
\frac{d}{d x}(u v) & =\lim _{h \rightarrow 0} \frac{u(x+h) v(x+h)-u(x) v(x)}{h} \\
& =\lim _{h \rightarrow 0} u(x+h) \lim _{h \rightarrow 0} \frac{v(x+h)-v(x)}{h}+\lim _{h \rightarrow 0} v(x) \lim _{h \rightarrow 0} \frac{u(x+h)-u(x)}{h} \\
& =u(x) \frac{d v}{d x}+v(x) \frac{d u}{d x}
\end{aligned}
$$

Example: Differentiate $y=\left(x^{2}+1\right)\left(x^{3}+3\right)$.
Let $u=x^{2}+1$ and $v=x^{3}+3$. Then $u^{\prime}=2 x$ and $v^{\prime}=3 x^{2}$. Hence

$$
y^{\prime}=u v^{\prime}+v u^{\prime}=\left(x^{2}+1\right) 3 x^{2}+2 x\left(x^{3}+3\right)=5 x^{4}+3 x^{2}+6 x .
$$

Rule 6 (Derivative Quotient Rule) If u and v are differentiable functions, then u / v is differentiable and

$$
\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}
$$

Example: Differentiate $y=\frac{t-2}{t^{2}+1}$.
Let $u=t-2$ and $v=t^{2}+1$. Then $u^{\prime}=1$ and $v^{\prime}=2 t$. Hence

$$
y^{\prime}=\frac{1\left(t^{2}+1\right)-(t-2) 2 t}{\left(t^{2}+1\right)^{2}}=\frac{-t^{2}+4 t+1}{\left(t^{2}+1\right)^{2}}
$$

Warning: $(u v)^{\prime} \neq u^{\prime} v^{\prime}$ and $(u / v)^{\prime} \neq u^{\prime} / v^{\prime}$.
Rule 7 (Power Rule for Negative Integers) If $f(x)=x^{n}$ for some negative integer n, then f is differentiable and

$$
\frac{d}{d x} x^{n}=n x^{n-1}
$$

Example: $\frac{d}{d x}\left(\frac{1}{x^{11}}\right)=\frac{d}{d x}\left(x^{-11}\right)=-11 x^{-12}$.

Higher-order derivatives

Definition Suppose f is differentiable function. If f^{\prime} is also differentiable, then we call $f^{\prime \prime}=\left(f^{\prime}\right)^{\prime}$ the second derivative of f. Similarly, if $f^{\prime \prime}$ is differentiable then we we call
$f^{\prime \prime \prime}=\left(f^{\prime \prime}\right)^{\prime}$ the third derivative of f. More generally, if f is differentiable n times for some $n \in \mathbb{N}$ then the n 'th derivative, $f^{(n)}$, of f is defined recursively by putting $f^{(0)}=f$, and

$$
f^{(n)}=\frac{d f^{(n-1)}}{d x}
$$

for $n \geq 1$.
Example: Find the first four derivatives of $f(x)=x^{3}$ and $g(x)=x^{-2}$.

$$
\begin{aligned}
f^{\prime}(x)=3 x^{2} & g^{\prime}(x)=-2 x^{-3} \\
f^{\prime \prime}(x)=6 x & g^{\prime \prime}(x)=6 x^{-4} \\
f^{\prime \prime \prime}(x)=6 & g^{\prime \prime \prime}(x)=-24 x^{-5} \\
f^{(4)}(x)=0 & g^{(4)}(x)=120 x^{-6} .
\end{aligned}
$$

[^0]: ${ }^{1}$ In this module our domains will never have isolated points so this part of the definition will never be used.

[^1]: ${ }^{2}$ In this context, a secant is a line joining two points of a curve.

[^2]: ${ }^{3}$ The $\frac{d}{d x}$ notation for differentiation was introduced in the late seventeenth century by the German mathematician Gottfried Wilhelm Liebniz and is referred to as Liebniz notation.

