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Example:

Does the sequence whose nth term is an = ((n+1)/(n−1))n converge? If so, find limn→∞ an.
If we just take the straightforward limit we get the indeterminate form 1∞. Typically with
questions of this type we take the logarithm. This gives:

ln an = ln

(

n + 1

n − 1

)n

= n ln

(

n + 1

n − 1

)

.

Hence

lim
n→∞

ln an = lim
n→∞

n ln

(

n + 1

n − 1

)

= lim
n→∞

ln
(

n+1

n−1

)

1/n

= lim
n→∞

ln(n + 1) − ln(n − 1)

1/n

= lim
n→∞

−2/(n2 − 1)

−1/n2
(using l’Hôpital’s Rule)

= lim
n→∞

2n2

n2 − 1
= 2 .

Let bn = ln an Then limn→∞ bn = 2 and since f(x) = ex is continuous we have by the
continuous function theorem for sequences

an = eln an = ebn → e2 as n → ∞ .

Therefore the sequence {an} converges to e2.

The following Theorem summarizes some common results for the limits of sequences:
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The first result can be proved using l’Hôpital’s rule. The second and third results can be
proved using logarithms and applying the previous theorems. Proofs of the remaining results
are given in Appendix 5 of Thomas’ Calculus.

Example:

Show that limn→∞

n

√
n2 = 1.

lim
n→∞

n

√
n2 = lim

n→∞

n2/n = lim
n→∞

(

n1/n
)2

= (1)2 = 1 .

For bounded, monotonic sequences there is the following theorem:

For example, look at a bounded, monotonically increasing function:

Example:

lim
n→∞

(

1 − 1

n

)

= 1 .

Infinite series

An infinite series is the sum of an infinite sequence of numbers

a1 + a2 + a3 + · · · + an + · · · .

Example:

1 +
1

2
+

1

4
+ · · · +

(

1

2

)n−1

+ · · · .



4

A geometric series has the form

a + ar + ar2 + · · · + arn−1 + · · · =
∞

∑

n=1

arn−1 =
∞

∑

n=0

arn

where a and r are fixed real numbers and a 6= 0. The quantity r is called the ratio of the
geometric series and can be positive or negative.
In the special case where r = 1 the nth partial sum is

sn = a + a · 1 + a · 12 + · · · + a · 1n−1 = na

and the series diverges because limn→∞ sn = ±∞ depending on the sign of a. If r = −1 the
series diverges because either sn = a or sn = 0 depending on the value of n.
Now consider the case of a geometric series with |r| 6= 1. We have

sn = a + ar + ar2 + · · · + arn−1

rsn = ar + ar2 + · · · + arn−1 + arn

sn − rsn = a − arn or sn(1 − r) = a(1 − rn)

⇒ sn =
a(1 − rn)

1 − r
(r 6= 1) .

Therefore, if |r| < 1 then rn → 0 as n → ∞ and hence sn → a/(1 − r). If |r| > 1 then
|rn| → ∞ and the series diverges. So we have

∞
∑

n=1

arn−1 =
a

1 − r
for |r| < 1
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and the geometric series converges.
For example,

1

9
+

1

27
+

1

81
· · · =

∞
∑

n=1

1

9

(

1

3

)n−1

=
(1/9)

1 − (1/3)
=

1

6
(a = 1/9, r = 1/3)

and

5 − 5

4
+

5

16
− 5

64
+ · · · =

∞
∑

n=0

(−1)n5

4n
=

5

1 + (1/4)
= 4 (a = 5, r = −1/4) .

Example:

Find the sum of the series
∞

∑

n=1

1

n(n + 1)
.

Note that we can use partial fractions to write

1

n(n + 1)
=

1

n
− 1

n + 1
.

Hence the sum of the first k terms is

k
∑

n=1

1

n(n + 1)
=

k
∑

n=1

(

1

n
− 1

n + 1

)

and so the kth partial sum is

sk =

(

1

1
− 1

2

)

+

(

1

2
− 1

3

)

+

(

1

3
− 1

4

)

+ · · · +
(

1

k
− 1

k + 1

)

=
1

1
+

(

−1

2
+

1

2

)

+

(

−1

3
+

1

3

)

+ · · · +
(

−1

k
+

1

k

)

− 1

k + 1

Hence sk → 1 as k → ∞ and so the series converges giving

∞
∑

n=1

1

n(n + 1)
= 1 .

Suppose the series
∑

∞

n=1
an converges to a sum S and the nth partial sum of the series is

sn = a1 +a2 + · · ·+an. When n is large, both sn and sn−1 are close to S and therefore their
difference an is close to zero. Using the Difference Rule for sequences we have

an = sn − sn−1 → S − S = 0 as n → ∞ .

Hence:
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This, in turn, leads to

Example:

∞
∑

n=1

n2 diverges because n2 → ∞

∞
∑

n=1

n + 1

n
diverges because

n + 1

n
→ 1

∞
∑

n=1

(−1)n+1 diverges because lim
n→∞

(−1)n+1 does not exist

∞
∑

n=1

−n

2n + 5
diverges because lim

n→∞

−n

2n + 5
= −1

2
6= 0 .

Note that the converse of the above theorem is false: If an → 0 this does not imply that
the series

∑

∞

n=1
an converges.

Example:

Consider the unusual case of a series where an → 0 but the series itself diverges:

1 +
1

2
+

1

2
+

1

4
+

1

4
+

1

4
+

1

4
+ · · · + 1

2n
+

1

2n
+ · · · + 1

2n
+ · · ·

where there are two terms of 1/2, four terms of 1/4, ..., 2n terms of 1/2n, etc. In this case
each grouping of terms adds up to 1 so the partial sums must increase without bound and
so the series diverges, even though the terms of the series form a sequence that converges to 0.

If we have two convergent series, we can add them term by term, subtract them term by
term, or multiply them by constants to make new convergent series:
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Example:

Find
∑

∞

n=1
(3n−1 − 1)/6n−1 .

∞
∑

n=1

3n−1 − 1

6n−1
=

∞
∑

n=1

(

1

2n−1
− 1

6n−1

)

=
∞

∑

n=1

1

2n−1
−

∞
∑

n=1

1

6n−1

=
1

1 − (1/2)
− 1

1 − (1/6)
(two geometric series)

= 2 − 6

5
=

4

5
.

We can add a finite number of terms or delete a finite number of terms without altering the
convergence or divergence of a series but if the series is convergent this will usually alter the
sum. Consider the series

∞
∑

n=1

an = a1 + a2 + · · · + ak−1 +
∞

∑

n=k

an .

If
∑

∞

n=1
an converges, then

∑

∞

n=k an converges for any k > 1. Conversely, if
∑

∞

n=k an

converges for any k > 1, then
∑

∞

n=1
an converges.

Note that re-indexing a series (e.g. changing the starting value of the index) does not alter
its convergence, provided the order of the terms is preserved.
For example, raise the starting value of the index h units:

n = k − h :
∞

∑

n=1

an =
∞

∑

k=1+h

ak−h = a1 + a2 + a3 + · · · .

Lower the starting value of the index h units:

n = k + h :
∞

∑

n=1

an =
∞

∑

k=1−h

ak+h = a1 + a2 + a3 + · · · .

The Integral Test

For a given series
∑

an we want to know: (1) Does it converge? (2) If it converges, what is
its sum?
A corollary of the Monotonic Sequence Theorem is that the series

∑

∞

n=1
an of non-negative

terms converges if and only if (why?) its partial sums are bounded from above.
As a warm-up, consider the harmonic series:

∞
∑

n=1

1

n
= 1 +

1

2
+

1

3
+ · · · + 1

n
+ · · · .

This series is actually divergent even though the nth term 1/n → 0 as n → ∞, cf. the n-th

term test seen before. However, the series has no upper bound for its partial sums. We can
see this by writing the series as

1 +
1

2
+

(

1

3
+

1

4

)

+

(

1

5
+

1

6
+

1

7
+

1

8

)

+

(

1

9
+

1

10
+ · · · + 1

16

)

+ · · · .
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Now 1

3
+ 1

4
> 2

4
= 1

2
, 1

5
+ 1

6
+ 1

7
+ 1

8
> 4

8
= 1

2
, 1

9
+ 1

10
+ · · · + 1

16
> 8

16
= 1

2
and so on.

Therefore the sum of the 2n terms ending with 1/2n+1 is > 2n/2n+1 = 1/2. Therefore the
sequence of partial sums is not bounded from above, and so the harmonic series diverges.
Now consider the series,

∞
∑

n=1

1

n2
= 1 +

1

4
+

1

9
+

1

16
+ · · · + 1

n2
+ · · ·

Does it converge or diverge? To answer this question we will consider a new approach
involving the use of integration. What we need to do is compare series

∑

∞

n=1
1/n2 with the

integral
∫

∞

1
1/x2 dx.


