MTH4100 Calculus I

Bill Jackson
School of Mathematical Sciences QMUL

Week 4, Semester 1, 2012

One-sided limits

For a function f to have the limit L as x approaches $c, f(x)$ must become arbitrarily close to L as x approaches c from both sides. But we can also consider the behavior of $f(x)$ as x approaches c from only one of the two sides.

One-sided limits

For a function f to have the limit L as x approaches $c, f(x)$ must become arbitrarily close to L as x approaches c from both sides. But we can also consider the behavior of $f(x)$ as x approaches c from only one of the two sides.

Informal Definition L is a left-hand limit of f at c if $f(x)$ becomes arbitrarily close to L as x approaches c from below. We write

$$
\lim _{x \rightarrow c^{-}} f(x)=L
$$

One-sided limits

For a function f to have the limit L as x approaches $c, f(x)$ must become arbitrarily close to L as x approaches c from both sides. But we can also consider the behavior of $f(x)$ as x approaches c from only one of the two sides.

Informal Definition L is a left-hand limit of f at c if $f(x)$ becomes arbitrarily close to L as x approaches c from below. We write

$$
\lim _{x \rightarrow c^{-}} f(x)=L
$$

Similarly, M is a right-hand limit of f at c if $f(x)$ becomes arbitrarily close to M as x approaches c from above. We write

$$
\lim _{x \rightarrow c^{+}} f(x)=M
$$

Example

$$
f(x)=\frac{x}{|x|}
$$

- $\lim _{x \rightarrow 0^{+}} f(x)=1$
- $\lim _{x \rightarrow 0^{-}} f(x)=-1$
- $\lim _{x \rightarrow 0} f(x)$ does not exist

Example

c	$\lim _{x \rightarrow c^{-}} f(x)$	$\lim _{x \rightarrow c^{+}} f(x)$	$\lim _{x \rightarrow c} f(x)$
0	cannot exist	1	cannot exist
1	0	1	does not exist
2	1	1	1
3	2	2	2
4	1	cannot exist	cannot exist

Results

Theorem

A function f has a limit at c if and only if it has both a left-hand and right-hand limit at c and these two limits are equal, i.e.
$\lim _{x \rightarrow c} f(x)=L$ if and only if $\lim _{x \rightarrow c^{-}} f(x)=L$ and $\lim _{x \rightarrow c^{+}} f(x)=L$

Results

Theorem

A function f has a limit at c if and only if it has both a left-hand and right-hand limit at c and these two limits are equal, i.e.

$$
\lim _{x \rightarrow c} f(x)=L \text { if and only if } \lim _{x \rightarrow c^{-}} f(x)=L \text { and } \lim _{x \rightarrow c^{+}} f(x)=L
$$

The Limit Law Theorem and results about limits of polynomials and rational functions also hold for one-sided limits.

Theorem (The Sandwich Theorem)

Suppose that f, g, h are functions defined on an open interval I containing c (except possibly at c itself). Suppose further that $g(x) \leq f(x) \leq h(x)$ for all $x \in I \backslash\{c\}$ and that $\lim _{x \rightarrow c} g(x)=L=\lim _{x \rightarrow c} h(x)$. Then

$$
\lim _{x \rightarrow c} f(x)=L
$$

Theorem (The Sandwich Theorem)

Suppose that f, g, h are functions defined on an open interval I containing c (except possibly at c itself). Suppose further that $g(x) \leq f(x) \leq h(x)$ for all $x \in I \backslash\{c\}$ and that $\lim _{x \rightarrow c} g(x)=L=\lim _{x \rightarrow c} h(x)$. Then

$$
\lim _{x \rightarrow c} f(x)=L
$$

A similar result holds for one-sided limits.

Theorem (The Sandwich Theorem)

Suppose that f, g, h are functions defined on an open interval I containing c (except possibly at c itself). Suppose further that $g(x) \leq f(x) \leq h(x)$ for all $x \in I \backslash\{c\}$ and that $\lim _{x \rightarrow c} g(x)=L=\lim _{x \rightarrow c} h(x)$. Then

$$
\lim _{x \rightarrow c} f(x)=L
$$

A similar result holds for one-sided limits.
The sandwich theorem can be used to calculate the limit of a complicated function when its values are 'sandwiched between' those of two simpler functions. In particular we can use it to determine limits of trigonometric functions.

Limits of trigonometric functions

Lemma

$\lim _{\theta \rightarrow 0} \sin \theta=0$ and $\lim _{\theta \rightarrow 0} \cos \theta=1$.

Limits of trigonometric functions

Lemma

$\lim _{\theta \rightarrow 0} \sin \theta=0$ and $\lim _{\theta \rightarrow 0} \cos \theta=1$.

Theorem
 $\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1$.

Limits of trigonometric functions

Lemma

$\lim _{\theta \rightarrow 0} \sin \theta=0$ and $\lim _{\theta \rightarrow 0} \cos \theta=1$.

Theorem
 $\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1$.

Example Determine $\lim _{\theta \rightarrow 0} \frac{\cos \theta-1}{\theta}$.

Limits at infinity

Example

We would like to describe the behavior of $f(x)$ as $|x|$ gets very large.

Limits at infinity

Informal definition We say that $f(x)$ has the limit L as x approaches infinity and write

$$
\lim _{x \rightarrow \infty} f(x)=L
$$

if, as x moves increasingly far from the origin in the positive direction, $f(x)$ gets arbitrarily close to L. Similarly, we say that $f(x)$ has the limit L as x approaches minus infinity and write

$$
\lim _{x \rightarrow-\infty} f(x)=L
$$

if, as x moves increasingly far from the origin in the negative direction, $f(x)$ gets arbitrarily close to L.

Limits at infinity

Informal definition We say that $f(x)$ has the limit L as x approaches infinity and write

$$
\lim _{x \rightarrow \infty} f(x)=L
$$

if, as x moves increasingly far from the origin in the positive direction, $f(x)$ gets arbitrarily close to L. Similarly, we say that $f(x)$ has the limit L as x approaches minus infinity and write

$$
\lim _{x \rightarrow-\infty} f(x)=L
$$

if, as x moves increasingly far from the origin in the negative direction, $f(x)$ gets arbitrarily close to L.
Examples:

$$
\lim _{x \rightarrow \infty} k=k=\lim _{x \rightarrow-\infty} k
$$

and

$$
\lim _{x \rightarrow \infty} \frac{1}{x}=0=\lim _{x \rightarrow-\infty} \frac{1}{x} .
$$

Limit Laws

Theorem (Limit laws as x approaches infinity)

Suppose that L, M are real numbers, and f and g are functions such that $\lim _{x \rightarrow \infty} f(x)=L$ and $\lim _{x \rightarrow \infty} g(x)=M$. Then
(1) Sum Rule: $\lim _{x \rightarrow \infty}(f(x)+g(x))=L+M$

The limit of the sum of two functions is the sum of their limits.
(2) Difference Rule: $\lim _{x \rightarrow \infty}(f(x)-g(x))=L-M$
(3) Constant Multiple Rule: $\lim _{x \rightarrow \infty}(k f(x))=k L$ for any constant $k \in \mathbb{R}$.
(9) Product Rule: $\lim _{x \rightarrow \infty}(f(x) g(x))=L M$
(3) Quotient Rule: $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\frac{L}{M}$ when $M \neq 0$
(0) Power Rule: $\lim _{x \rightarrow \infty}(f(x))^{r / s}=L^{r / s}$ for any integers r, s such that $L^{r / s}$ is a real number.

Horizontal Asymptotes

Limits for $f(x)$ as x approaches $\pm \infty$ give rise to 'horizontal asymptotes'.

DEFINITION Horizontal Asymptote

A line $y=b$ is a horizontal asymptote of the graph of a function $y=f(x)$ if either

$$
\lim _{x \rightarrow \infty} f(x)=b \quad \text { or } \quad \lim _{x \rightarrow-\infty} f(x)=b
$$

Horizontal Asymptotes

Example

We have

$$
\lim _{x \rightarrow \infty} \frac{1}{x}=0 \quad \text { and } \quad \lim _{x \rightarrow-\infty} \frac{1}{x}=0
$$

This tells us that the graph of $y=1 / x$ approaches the line $y=0$ as $|x|$ becomes very large. Thus the line $y=0$ is a horizontal asymptote of the graph.

Horizontal Asymptotes

Example Calculate the horizontal asymptote(s) for the graph of $y=\frac{5 x^{2}+8 x-3}{3 x^{2}+2}$.

Horizontal Asymptotes

Example Calculate the horizontal asymptote(s) for the graph of $y=\frac{5 x^{2}+8 x-3}{3 x^{2}+2}$.
The graph of f will have the line $y=5 / 3$ as a horizontal asymptote on both the left and the right.

Horizontal Asymptotes

Example Calculate the horizontal asymptote(s) for the graph of $y=\frac{5 x^{2}+8 x-3}{3 x^{2}+2}$.
The graph of f will have the line $y=5 / 3$ as a horizontal asymptote on both the left and the right.

Horizontal Asymptotes

Example Calculate the horizontal asymptote(s) for the graph of $y=\frac{5 x^{2}+8 x-3}{3 x^{2}+2}$.
The graph of f will have the line $y=5 / 3$ as a horizontal asymptote on both the left and the right.

A similar approach will give us the horizontal asymptotes of any rational function in which the degree of the numerator is less than or equal to the degree of the denominator: we divide both the numerator and denominator by the largest power of x appearing in the denominator.

Oblique asymptotes

How does a rational function $f(x)=p(x) / q(x)$ behave as $|x|$ gets large when the degree of $p(x)$ is one greater than the degree of $q(x)$?

Oblique asymptotes

How does a rational function $f(x)=p(x) / q(x)$ behave as $|x|$ gets large when the degree of $p(x)$ is one greater than the degree of $q(x)$?
Example: Consider $f(x)=\frac{2 x^{2}-3}{7 x+4}$.

Oblique asymptotes

How does a rational function $f(x)=p(x) / q(x)$ behave as $|x|$ gets large when the degree of $p(x)$ is one greater than the degree of $q(x)$?
Example: Consider $f(x)=\frac{2 x^{2}-3}{7 x+4}$.
The graph of $f(x)$ will approach the line $y=\frac{2}{7} x-\frac{8}{49}$ as $|x|$ gets very large.

Oblique asymptotes

How does a rational function $f(x)=p(x) / q(x)$ behave as $|x|$ gets large when the degree of $p(x)$ is one greater than the degree of $q(x)$?
Example: Consider $f(x)=\frac{2 x^{2}-3}{7 x+4}$.
The graph of $f(x)$ will approach the line $y=\frac{2}{7} x-\frac{8}{49}$ as $|x|$ gets very large.

Oblique asymptotes

In general, if a rational function $f(x)=p(x) / q(x)$ has the degree of $p(x)$ one greater than the degree of $q(x)$, then polynomial division gives

$$
f(x)=a x+b+r(x) \text { with } \lim _{x \rightarrow \infty} r(x)=0=\lim _{x \rightarrow-\infty} r(x)
$$

In this case the line $y=a x+b$ is said to be an oblique (or slanted) asymptote of $f(x)$.

Infinite limits - Example

What is the behaviour of $f(x)=\frac{1}{x^{2}}$ near $x=0$?

Infinite limits

Informal definition We say that $f(x)$ approaches infinity as x approaches x_{0} and write

$$
\lim _{x \rightarrow x_{0}} f(x)=\infty
$$

if the values of $f(x)$ grow without bound as x approaches x_{0}, eventually reaching and surpassing every positive real number.

Infinite limits

Informal definition We say that $f(x)$ approaches infinity as x approaches x_{0} and write

$$
\lim _{x \rightarrow x_{0}} f(x)=\infty
$$

if the values of $f(x)$ grow without bound as x approaches x_{0}, eventually reaching and surpassing every positive real number. Similarly, we say that $f(x)$ approaches negative infinity as x approaches x_{0} and write

$$
\lim _{x \rightarrow x_{0}} f(x)=-\infty
$$

if the values of $f(x)$ decrease without bound as x approaches x_{0}, eventually reaching and surpassing every negative real number.

Infinite limits - Example continued

$$
\lim _{x \rightarrow 0} \frac{1}{x^{2}}=\infty
$$

as the values of $1 / x^{2}$ are positive and become arbitrarily large as x approaches 0 from the right or the left.

One sided infinite limits - Example

$f(x)=1 / x$

We say that $f(x)$ approaches infinity as x approaches 0 from the right and write $\lim _{x \rightarrow 0^{+}} \frac{1}{x}=\infty$.

One sided infinite limits - Example

$f(x)=1 / x$

We say that $f(x)$ approaches infinity as x approaches 0 from the right and write $\lim _{x \rightarrow 0^{+}} \frac{1}{x}=\infty$.
Similarly, we say that $f(x)$ approaches minus infinity as x approaches 0 from the left and write $\lim _{x \rightarrow 0^{-}} \frac{1}{x}=-\infty$.

Vertical asymptotes

Infinite limits give rise to 'vertical asymptotes' in the graph of a function:

DEFINITION Vertical Asymptote

A line $x=a$ is a vertical asymptote of the graph of a function $y=f(x)$ if either

$$
\lim _{x \rightarrow a^{+}} f(x)= \pm \infty \quad \text { or } \quad \lim _{x \rightarrow a^{-}} f(x)= \pm \infty
$$

Vertical asymptotes - Example

Since $\lim _{x \rightarrow 0^{+}} \frac{1}{x}=\infty$ and $\lim _{x \rightarrow 0^{-}} \frac{1}{x}=-\infty$, the graph of $y=1 / x$ approaches the line $x=0$ as x approaches 0 , and this line is a vertical asymptote of the graph.

Vertical asymptotes - Example

Since $\lim _{x \rightarrow 0^{+}} \frac{1}{x}=\infty$ and $\lim _{x \rightarrow 0^{-}} \frac{1}{x}=-\infty$, the graph of $y=1 / x$ approaches the line $x=0$ as x approaches 0 , and this line is a vertical asymptote of the graph.
The graph of $y=1 / x$ has two asymptotes: the line $y=0$ is a horizontal asymptote and the line $x=0$ is a vertical asymptote.

Vertical asymptotes - Example

Find the asymptotes of

$$
f(x)=-\frac{8}{x^{2}-4} .
$$

Vertical asymptotes - Example

Find the asymptotes of

$$
f(x)=-\frac{8}{x^{2}-4}
$$

Vertical asymptotes - Example

Find the asymptotes of $f(x)=\frac{x^{2}-3}{2 x-4}$.

Vertical asymptotes - Example

Find the asymptotes of $f(x)=\frac{x^{2}-3}{2 x-4}$.

We say that the term $\frac{x}{2}+1$ dominates $f(x)$ when $|x|$ is large and that the term $\frac{1}{2 x-4}$ dominates $f(x)$ when x is close to 2 .

Continuity

Informally a function defined on an interval is continuous if we can sketch its graph in one continuous motion without lifting our pen from the paper. To give a more precise definition we first define what it means for a function to be continuous at a single point in its domain, and to do this we must distinguish between different kinds of points in the domain.

Interior points and end points

Definition Let $D \subset \mathbb{R}$ and $x \in D$. Then:

- x is an interior point of D if we have $x \in I$ for some open interval $I=(a, b) \subseteq D$;

Interior points and end points

Definition Let $D \subset \mathbb{R}$ and $x \in D$. Then:

- x is an interior point of D if we have $x \in I$ for some open interval $I=(a, b) \subseteq D$;
- x is a left end-point, respectively right end-point, of D if x is not an interior point of D and we have $x \in I$ for some half-closed interval $I=[x, b) \subseteq D$, respectively $I=(a, x] \subseteq D$;

Interior points and end points

Definition Let $D \subset \mathbb{R}$ and $x \in D$. Then:

- x is an interior point of D if we have $x \in I$ for some open interval $I=(a, b) \subseteq D$;
- x is a left end-point, respectively right end-point, of D if x is not an interior point of D and we have $x \in I$ for some half-closed interval $I=[x, b) \subseteq D$, respectively $I=(a, x] \subseteq D$;
- x is an isolated point of D if x is neither an interior point nor an end-point.

Interior points and end points

Definition Let $D \subset \mathbb{R}$ and $x \in D$. Then:

- x is an interior point of D if we have $x \in I$ for some open interval $I=(a, b) \subseteq D$;
- x is a left end-point, respectively right end-point, of D if x is not an interior point of D and we have $x \in I$ for some half-closed interval $I=[x, b) \subseteq D$, respectively $I=(a, x] \subseteq D$;
- x is an isolated point of D if x is neither an interior point nor an end-point.
Example: Let $D=[1,2] \cup(3,4] \cup\{5\}$. Then D has one left end-point, 1 ; two right endpoints 2,4 ; one isolated point 5 ; and all other points in D are interior points.

Continuity at a point

Definition Let f be a function with domain $D \subset \mathbb{R}$. Then:

- f is continuous at an interior point c of D if $\lim _{x \rightarrow c} f(x)$ exists and is equal to $f(c)$.

Continuity at a point

Definition Let f be a function with domain $D \subset \mathbb{R}$. Then:

- f is continuous at an interior point c of D if $\lim _{x \rightarrow c} f(x)$ exists and is equal to $f(c)$.
- f is continuous at a left end-point a of D if $\lim _{x \rightarrow a^{+}} f(x)$ exists and is equal to $f(a)$.

Continuity at a point

Definition Let f be a function with domain $D \subset \mathbb{R}$. Then:

- f is continuous at an interior point c of D if $\lim _{x \rightarrow c} f(x)$ exists and is equal to $f(c)$.
- f is continuous at a left end-point a of D if $\lim _{x \rightarrow a^{+}} f(x)$ exists and is equal to $f(a)$.
- f is continuous at a right end-point b of D if $\lim _{x \rightarrow b^{-}} f(x)$ exists and is equal to $f(b)$.

Continuity at a point

Definition Let f be a function with domain $D \subset \mathbb{R}$. Then:

- f is continuous at an interior point c of D if $\lim _{x \rightarrow c} f(x)$ exists and is equal to $f(c)$.
- f is continuous at a left end-point a of D if $\lim _{x \rightarrow a^{+}} f(x)$ exists and is equal to $f(a)$.
- f is continuous at a right end-point b of D if $\lim _{x \rightarrow b^{-}} f(x)$ exists and is equal to $f(b)$.
- f is continuous at all isolated point of D.

Example

The function f is continuous at all points in $[0,4]$ except at $x=1, x=2$ and $x=4$.

