MTH4101 Calculus II
 Lecture notes for Week 4
 Derivatives, V, Series I

Thomas' Calculus, Sections 14.8, 10.1 and 10.2

Rainer Klages
School of Mathematical Sciences
Queen Mary, University of London

Spring 2013

Lagrange Multipliers

We now consider the problem to find extrema of a function $f(x, y, z)$ whose domain is constrained by another function $g(x, y, z)=0$ to lie within some subset.

Suppose that $f(x, y, z)$ and $g(x, y, z)$ are differentiable and $\nabla g \neq 0$ when $g(x, y, z)=0$. To find the local maximum and minimum values of f subject to the constraint $g(x, y, z)=0$, we need to find the values of x, y, z and λ that simultaneously satisfy the equations

$$
\nabla f=\lambda \nabla g \quad \text { and } \quad g(x, y, z)=0
$$

This is the Method of Lagrange Multipliers. For functions of two variables the condition is similar but without the variable z.

We will see how the method works by considering two examples. ${ }^{1}$

Example:

Find the greatest and smallest values that the function $f(x, y)=x y$ takes on the ellipse

$$
\frac{x^{2}}{8}+\frac{y^{2}}{2}=1
$$

We need to find the extreme values of $f(x, y)=x y$ subject to the constraint

$$
g(x, y)=\frac{x^{2}}{8}+\frac{y^{2}}{2}-1=0
$$

First, find the values of x, y and λ for which

$$
\nabla f=\lambda \nabla g \quad \text { and } \quad g(x, y)=0 .
$$

[^0]\[

$$
\begin{aligned}
\nabla f & =f_{x} \mathbf{i}+f_{y} \mathbf{j}=y \mathbf{i}+x \mathbf{j} \\
\nabla g & =g_{x} \mathbf{i}+g_{y} \mathbf{j}=\frac{x}{4} \mathbf{i}+y \mathbf{j}
\end{aligned}
$$
\]

Hence

$$
y \mathbf{i}+x \mathbf{j}=\frac{\lambda}{4} x \mathbf{i}+\lambda y \mathbf{j} .
$$

Comparing components gives

$$
y=\frac{\lambda}{4} x, \quad x=\lambda y .
$$

Therefore

$$
y=\frac{\lambda}{4}(\lambda y)=\frac{\lambda^{2}}{4} y .
$$

Hence $y=0$ or $\lambda= \pm 2$ and there are two cases to consider.

1. If $y=0$, then $x=y=0$. But $(0,0)$ does not lie on the ellipse, hence $y \neq 0$.
2. If $y \neq 0$, then $\lambda= \pm 2$ and $x= \pm 2 y$. Substituting in $g(x, y)=0$ gives

$$
\frac{(\pm 2 y)^{2}}{8}+\frac{y^{2}}{2}=1 \quad \Rightarrow 4 y^{2}+4 y^{2}=8 \quad \Rightarrow y= \pm 1
$$

Therefore $f(x, y)$ has its extreme values on the ellipse at the four points $(\pm 2,1),(\pm 2,-1)$. The extreme values are $x y=2$ and $x y=-2$.
The level curves of $f(x, y)=x y$ are the hyperbolas $x y=c$. The extreme values are the points on the ellipse when ∇f (red) is a scalar multiple of ∇g (blue):

Example:

Find the maximum and minimum values of the function $f(x, y)=3 x+4 y$ on the circle $x^{2}+y^{2}=1$.

$$
f(x, y)=3 x+4 y, \quad g(x, y)=x^{2}+y^{2}-1
$$

The Lagrange multiplier condition states that $\nabla f=\lambda \nabla g$, hence

$$
3 \mathbf{i}+4 \mathbf{j}=2 \lambda x \mathbf{i}+2 \lambda y \mathbf{j} \quad \Rightarrow x=\frac{3}{2 \lambda}, \quad y=\frac{2}{\lambda} \quad(\lambda \neq 0 ; \text { why? }) .
$$

Therefore x and y have the same sign.
The condition $g(x, y)=0$ gives

$$
x^{2}+y^{2}-1=0
$$

and this gives

$$
\left(\frac{3}{2 \lambda}\right)^{2}+\left(\frac{2}{\lambda}\right)^{2}-1=0 .
$$

This gives

$$
\frac{9}{4 \lambda^{2}}+\frac{4}{\lambda^{2}}=1 \quad \Rightarrow 9+16=4 \lambda^{2} \quad \Rightarrow \lambda= \pm \frac{5}{2} .
$$

Hence

$$
x=\frac{3}{2 \lambda}= \pm \frac{3}{5}, \quad y=\frac{2}{\lambda}= \pm \frac{4}{5} .
$$

Therefore the function $f(x, y)=3 x+4 y$ has extreme values at $(x, y)= \pm(3 / 5,4 / 5)$.
The level curves of $f(x, y)=3 x+4 y$ are the lines $3 x+4 y=c$. The further the lines lie from the origin, the larger the absolute value of f :

Sequences

A sequence is a list of numbers in a given order:

$$
a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots
$$

Each of the a_{1}, a_{2}, etc. represents a number; these are the terms of the sequence. For example

$$
2,4,6,8, \ldots, 2 n, \ldots
$$

has first term $a_{1}=2$, second term $a_{2}=4$ and nth term $a_{n}=2 n$. The integer n is called the index of a_{n} and denotes where a_{n} occurs in the list.
We can consider the sequence $a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots$ as a function that sends 1 to $a_{1}, 2$ to a_{2}, etc. and in general sends the positive integer n to the nth term a_{n}.

DEFINITION Infinite Sequence

An infinite sequence of numbers is a function whose domain is the set of positive integers.

Sequences can be described by rules or by listing terms. For example,

$$
\left.\begin{array}{ll}
a_{n}= & \left\{a_{n}\right\} \\
b_{n}=(-1)^{n+1}(1 / n) & \left\{b_{n}\right\}=\left\{1,-\frac{1}{2}, \frac{1}{3},-\frac{1}{4}, \ldots,(-1)^{n+1} \frac{1}{n}, \ldots\right\} \\
c_{n}= & (n-1) / n \\
d_{n} & =(-1)^{n+1}
\end{array}\left\{c_{n}\right\}=\left\{0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \ldots, \frac{n-1}{n}, \ldots\right\}\right\}
$$

Sequences can be illustrated graphically either as points on a real axis or as the graph of a function defining the sequence:

Consider the following sequences:

$$
\begin{array}{cl}
\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots, \frac{1}{n}, \ldots\right\} & \text { terms approach } 0 \text { as } n \text { gets large } \\
\left\{0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \ldots, 1-\frac{1}{n}, \ldots\right\} & \text { terms approach } 1 \text { as } n \text { gets large } \\
\{\sqrt{1}, \sqrt{2}, \sqrt{3}, \sqrt{4}, \ldots, \sqrt{n}, \ldots\} & \text { terms get larger than any number as } n \text { increases } \\
\left\{1,-1,1,-1, \ldots,(-1)^{n+1}, \ldots\right\} & \begin{array}{l}
\text { terms oscillate between } 1 \text { and }-1, \\
\\
\text { never converging to a single value }
\end{array}
\end{array}
$$

This leads to the definition of convergence, divergence and a limit:

DEFINITIONS Converges, Diverges, Limit

The sequence $\left\{a_{n}\right\}$ converges to the number L if to every positive number ϵ there corresponds an integer N such that for all n,

$$
n>N \quad \Rightarrow \quad\left|a_{n}-L\right|<\epsilon .
$$

If no such number L exists, we say that $\left\{a_{n}\right\}$ diverges.
If $\left\{a_{n}\right\}$ converges to L, we write $\lim _{n \rightarrow \infty} a_{n}=L$, or simply $a_{n} \rightarrow L$, and call L the limit of the sequence

The concept of a limit is illustrated in the following figure:

Here $a_{n} \rightarrow L$ if $y=L$ is a horizontal asymptote of the sequence of points $\left\{\left(n, a_{n}\right)\right\}$.
We will now consider two examples of the application of the definitions.

Example:

We want to prove that

$$
\lim _{n \rightarrow \infty} \frac{1}{n}=0
$$

Let $\epsilon>0$ be given. We need to find an integer N such that for all n,

$$
n>N \Rightarrow\left|\frac{1}{n}-0\right|<\epsilon
$$

This condition will be satisfied provided $1 / n<\epsilon$, which means $n>1 / \epsilon$. Therefore if N is any integer greater than $1 / \epsilon$, the implication will hold for all $n>N$. Hence $\lim _{n \rightarrow \infty}(1 / n)=0$. For example, suppose we take $\epsilon=0.01$ then the condition is just $n>100$.

Example:

We want to prove that the sequence

$$
\left\{1,-1,1,-1, \ldots,(-1)^{n+1}, \ldots\right\} \quad \text { diverges. }
$$

proof by contradiction: Assume that the sequence converges to some number L. Choose $\epsilon=\frac{1}{2}$ in the definition of the limit and so all terms a_{n} of the sequence with n larger than some N must lie within $\epsilon=\frac{1}{2}$ of L :

$$
n>N \Rightarrow\left|a_{n}-L\right|<\frac{1}{2}
$$

Since 1 is in every other term of the sequence, 1 must lie within ϵ of L. Hence

$$
|1-L|=|L-1|<\frac{1}{2} \quad \text { or } \quad \frac{1}{2}<L<\frac{3}{2} .
$$

Then -1 is also in every other term and so we must have

$$
|L-(-1)|<\frac{1}{2} \quad \text { or } \quad-\frac{3}{2}<L<-\frac{1}{2}
$$

However, this is a contradiction: Both conditions cannot be satisfied simultaneously. Therefore no such limit exists and so the sequence diverges.
There is a second type of divergence:

DEFINITION Diverges to Infinity

The sequence $\left\{a_{n}\right\}$ diverges to infinity if for every number M there is an integer N such that for all n larger than $N, a_{n}>M$. If this condition holds we write

$$
\lim _{n \rightarrow \infty} a_{n}=\infty \quad \text { or } \quad a_{n} \rightarrow \infty
$$

Similarly if for every number m there is an integer N such that for all $n>N$ we have $a_{n}<m$, then we say $\left\{a_{n}\right\}$ diverges to negative infinity and write

$$
\lim _{n \rightarrow \infty} a_{n}=-\infty \quad \text { or } \quad a_{n} \rightarrow-\infty .
$$

Example:

$$
\lim _{n \rightarrow \infty} \sqrt{n}=\infty \quad \text { (proof?) }
$$

note: The sequence $\{1,-2,3,-4,5, \ldots\}$ also diverges, but not to ∞ or $-\infty$.
Sequences are functions with domain restricted to $n \in \mathbb{N}$, hence:

THEOREM 1

Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be sequences of real numbers and let A and B be real numbers.
The following rules hold if $\lim _{n \rightarrow \infty} a_{n}=A$ and $\lim _{n \rightarrow \infty} b_{n}=B$.

1. Sum Rule: $\quad \lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=A+B$
2. Difference Rule: $\quad \lim _{n \rightarrow \infty}\left(a_{n}-b_{n}\right)=A-B$
3. Product Rule: $\quad \lim _{n \rightarrow \infty}\left(a_{n} \cdot b_{n}\right)=A \cdot B$
4. Constant Multiple Rule: $\quad \lim _{n \rightarrow \infty}\left(k \cdot b_{n}\right)=k \cdot B \quad$ (Any number k)
5. Quotient Rule: $\quad \lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{A}{B} \quad$ if $B \neq 0$

We can use these rules to help us to calculate limits of sequences.

Example:

Find $\lim _{n \rightarrow \infty} \frac{n-1}{n}$.

$$
\lim _{n \rightarrow \infty} \frac{n-1}{n}=\lim _{n \rightarrow \infty}\left(1-\frac{1}{n}\right)=\lim _{n \rightarrow \infty} 1-\lim _{n \rightarrow \infty} \frac{1}{n}=1-0=1
$$

Example:

Find $\lim _{n \rightarrow \infty} \frac{5}{n^{2}}$.

$$
\lim _{n \rightarrow \infty} \frac{5}{n^{2}}=5 \cdot \lim _{n \rightarrow \infty} \frac{1}{n} \cdot \lim _{n \rightarrow \infty} \frac{1}{n}=5 \cdot 0 \cdot 0=0
$$

The Sandwich Theorem for Sequences provides another method for finding the limits of sequences:

THEOREM 2 The Sandwich Theorem for Sequences

Let $\left\{a_{n}\right\},\left\{b_{n}\right\}$, and $\left\{c_{n}\right\}$ be sequences of real numbers. If $a_{n} \leq b_{n} \leq c_{n}$ holds for all n beyond some index N, and if $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} c_{n}=L$, then $\lim _{n \rightarrow \infty} b_{n}=L$ also.

Note that if $\left|b_{n}\right| \leq c_{n}$ and $c_{n} \rightarrow 0$ as $n \rightarrow \infty$, then $b_{n} \rightarrow 0$ also, because $-c_{n} \leq b_{n} \leq c_{n}$.

Example:

Find $\lim _{n \rightarrow \infty} \frac{\sin n}{n}$.
By the properties of the sine function we have $-1 \leq \sin n \leq 1$ for all n. Therefore

$$
-\frac{1}{n} \leq \frac{\sin n}{n} \leq \frac{1}{n} \quad \Rightarrow \quad \lim _{n \rightarrow \infty} \frac{\sin n}{n}=0
$$

because of $\lim _{n \rightarrow \infty}(-1 / n)=\lim _{n \rightarrow \infty}(1 / n)=0$ and the use of the Sandwich Theorem.

Example:

Find $\lim _{n \rightarrow \infty} \frac{1}{2^{n}}$.
$1 / 2^{n}$ must always lie between 0 and $1 / n$ (e.g. $\frac{1}{2}<1, \frac{1}{4}<\frac{1}{2}, \frac{1}{8}<\frac{1}{3}, \frac{1}{16}<\frac{1}{4}, \ldots$). Therefore

$$
0 \leq \frac{1}{2^{n}} \leq \frac{1}{n} \quad \Rightarrow \quad \lim _{n \rightarrow \infty} \frac{1}{2^{n}}=0
$$

The limits of sequences can also be determined by using the following theorem:

THEOREM 3 The Continuous Function Theorem for Sequences

Let $\left\{a_{n}\right\}$ be a sequence of real numbers. If $a_{n} \rightarrow L$ and if f is a function that is continuous at L and defined at all a_{n}, then $f\left(a_{n}\right) \rightarrow f(L)$.

Example:

Determine the limit of the sequence $\left\{2^{1 / n}\right\}$ as $n \rightarrow \infty$.
We already know that the sequence $\left\{\frac{1}{n}\right\}$ converges to 0 as $n \rightarrow \infty$. Let $a_{n}=1 / n, f(x)=2^{x}$ and $L=0$ in the continuous function theorem for sequences. This gives

$$
2^{1 / n}=f(1 / n) \rightarrow f(L)=2^{0}=1 \quad \text { as } \quad n \rightarrow \infty .
$$

Hence the sequence $\left\{2^{1 / n}\right\}$ converges to 1 .
We can also make use of l'Hôpital's Rule to find the limits of sequences. To do so we need to make use of the following theorem:

THEOREM 4

Suppose that $f(x)$ is a function defined for all $x \geq n_{0}$ and that $\left\{a_{n}\right\}$ is a sequence of real numbers such that $a_{n}=f(n)$ for $n \geq n_{0}$. Then

$$
\lim _{x \rightarrow \infty} f(x)=L \quad \Rightarrow \quad \lim _{n \rightarrow \infty} a_{n}=L .
$$

Example:

Show that $\lim _{n \rightarrow \infty} \frac{\ln n}{\sqrt{n}}=0$.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\ln n}{\sqrt{n}}= & \lim _{n \rightarrow \infty} \frac{1 / n}{(1 / 2) n^{-1 / 2}} \\
& \text { (using l'Hôpital's Rule by treating } n \text { as a continuous real variable) } \\
= & \lim _{n \rightarrow \infty} 2 \cdot \frac{n^{1 / 2}}{n}=2 \lim _{n \rightarrow \infty} \frac{1}{n^{1 / 2}}=0 .
\end{aligned}
$$

[^0]: ${ }^{1}$ A detailed motivation and a sketch of the proof are provided in Thomas' Calculus, beginning of Section 14.8.

