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Lagrange Multipliers

We now consider the problem to find extrema of a function f(x, y, z) whose domain is con-
strained by another function g(x, y, z) = 0 to lie within some subset.

Suppose that f(x, y, z) and g(x, y, z) are differentiable and ∇g 6= 0 when g(x, y, z) = 0.
To find the local maximum and minimum values of f subject to the constraint

g(x, y, z) = 0, we need to find the values of x, y, z and λ that simultaneously satisfy the
equations

∇f = λ∇g and g(x, y, z) = 0 .

This is the Method of Lagrange Multipliers. For functions of two variables the condi-
tion is similar but without the variable z.

We will see how the method works by considering two examples.1

Example:

Find the greatest and smallest values that the function f(x, y) = xy takes on the ellipse

x2

8
+

y2

2
= 1 .

We need to find the extreme values of f(x, y) = xy subject to the constraint

g(x, y) =
x2

8
+

y2

2
− 1 = 0 .

First, find the values of x, y and λ for which

∇f = λ∇g and g(x, y) = 0 .

1A detailed motivation and a sketch of the proof are provided in Thomas’ Calculus, beginning of Section

14.8.
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∇f = fxi + fyj = yi + xj

∇g = gxi + gyj =
x

4
i + yj .

Hence

yi + xj =
λ

4
xi + λyj .

Comparing components gives

y =
λ

4
x , x = λy .

Therefore

y =
λ

4
(λy) =

λ2

4
y .

Hence y = 0 or λ = ±2 and there are two cases to consider.

1. If y = 0, then x = y = 0. But (0, 0) does not lie on the ellipse, hence y 6= 0.

2. If y 6= 0, then λ = ±2 and x = ±2y. Substituting in g(x, y) = 0 gives

(±2y)2

8
+

y2

2
= 1 ⇒ 4y2 + 4y2 = 8 ⇒ y = ±1 .

Therefore f(x, y) has its extreme values on the ellipse at the four points (±2, 1), (±2,−1).
The extreme values are xy = 2 and xy = −2.

The level curves of f(x, y) = xy are the hyperbolas xy = c. The extreme values are the
points on the ellipse when ∇f (red) is a scalar multiple of ∇g (blue):
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Example:

Find the maximum and minimum values of the function f(x, y) = 3x + 4y on the circle
x2 + y2 = 1.

f(x, y) = 3x + 4y , g(x, y) = x2 + y2 − 1 .

The Lagrange multiplier condition states that ∇f = λ∇g, hence

3i + 4j = 2λxi + 2λyj ⇒ x =
3

2λ
, y =

2

λ
(λ 6= 0 ; why?) .

Therefore x and y have the same sign.

The condition g(x, y) = 0 gives

x2 + y2 − 1 = 0

and this gives
(

3

2λ

)2

+

(

2

λ

)2

− 1 = 0 .

This gives
9

4λ2
+

4

λ2
= 1 ⇒ 9 + 16 = 4λ2 ⇒ λ = ±5

2
.

Hence

x =
3

2λ
= ±3

5
, y =

2

λ
= ±4

5
.

Therefore the function f(x, y) = 3x + 4y has extreme values at (x, y) = ±(3/5, 4/5).

The level curves of f(x, y) = 3x + 4y are the lines 3x + 4y = c. The further the lines lie
from the origin, the larger the absolute value of f :



5

Sequences

A sequence is a list of numbers in a given order:

a1, a2, a3, . . . , an, . . . .

Each of the a1, a2, etc. represents a number; these are the terms of the sequence. For
example

2, 4, 6, 8, . . . , 2n, . . .

has first term a1 = 2, second term a2 = 4 and nth term an = 2n. The integer n is called
the index of an and denotes where an occurs in the list.
We can consider the sequence a1, a2, a3, . . . , an, . . . as a function that sends 1 to a1, 2 to a2,
etc. and in general sends the positive integer n to the nth term an.

Sequences can be described by rules or by listing terms. For example,

an =
√

n {an} =
{√

1,
√

2,
√

3, . . . ,
√

n, . . .
}

bn = (−1)n+1(1/n) {bn} =

{

1,−1

2
,
1

3
,−1

4
, . . . , (−1)n+1

1

n
, . . .

}

cn = (n − 1)/n {cn} =

{

0,
1

2
,
2

3
,
3

4
, . . . ,

n − 1

n
, . . .

}

dn = (−1)n+1 {dn} =
{

1,−1, 1,−1, . . . , (−1)n+1, . . .
}

Sequences can be illustrated graphically either as points on a real axis or as the graph of a
function defining the sequence:
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Consider the following sequences:

{

1,
1

2
,
1

3
,
1

4
, . . . ,

1

n
, . . .

}

terms approach 0 as n gets large

{

0,
1

2
,
2

3
,
3

4
, . . . , 1 − 1

n
, . . .

}

terms approach 1 as n gets large

{√
1,
√

2,
√

3,
√

4, . . . ,
√

n, . . .
}

terms get larger than any number as n increases
{

1,−1, 1,−1, . . . , (−1)n+1, . . .
}

terms oscillate between 1 and −1,

never converging to a single value

This leads to the definition of convergence, divergence and a limit:

The concept of a limit is illustrated in the following figure:

Here an → L if y = L is a horizontal asymptote of the sequence of points {(n, an)}.

We will now consider two examples of the application of the definitions.
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Example:

We want to prove that

lim
n→∞

1

n
= 0.

Let ǫ > 0 be given. We need to find an integer N such that for all n,

n > N ⇒
∣

∣

∣

∣

1

n
− 0

∣

∣

∣

∣

< ǫ .

This condition will be satisfied provided 1/n < ǫ, which means n > 1/ǫ. Therefore if N is any
integer greater than 1/ǫ, the implication will hold for all n > N . Hence limn→∞(1/n) = 0.
For example, suppose we take ǫ = 0.01 then the condition is just n > 100.

Example:

We want to prove that the sequence

{

1,−1, 1,−1, . . . , (−1)n+1, . . .
}

diverges.

proof by contradiction: Assume that the sequence converges to some number L. Choose
ǫ = 1

2
in the definition of the limit and so all terms an of the sequence with n larger than

some N must lie within ǫ = 1

2
of L:

n > N ⇒ |an − L| <
1

2
.

Since 1 is in every other term of the sequence, 1 must lie within ǫ of L. Hence

|1 − L| = |L − 1| <
1

2
or

1

2
< L <

3

2
.

Then −1 is also in every other term and so we must have

|L − (−1)| <
1

2
or − 3

2
< L < −1

2
.

However, this is a contradiction: Both conditions cannot be satisfied simultaneously. There-
fore no such limit exists and so the sequence diverges.
There is a second type of divergence:

Example:

lim
n→∞

√
n = ∞ (proof?)
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note: The sequence {1,−2, 3,−4, 5, . . .} also diverges, but not to ∞ or −∞.

Sequences are functions with domain restricted to n ∈ N, hence:

We can use these rules to help us to calculate limits of sequences.

Example:

Find lim
n→∞

n − 1

n
.

lim
n→∞

n − 1

n
= lim

n→∞

(

1 − 1

n

)

= lim
n→∞

1 − lim
n→∞

1

n
= 1 − 0 = 1 .

Example:

Find lim
n→∞

5

n2
.

lim
n→∞

5

n2
= 5 · lim

n→∞

1

n
· lim

n→∞

1

n
= 5 · 0 · 0 = 0 .

The Sandwich Theorem for Sequences provides another method for finding the limits
of sequences:

Note that if |bn| ≤ cn and cn → 0 as n → ∞, then bn → 0 also, because −cn ≤ bn ≤ cn.

Example:

Find lim
n→∞

sin n

n
.

By the properties of the sine function we have −1 ≤ sin n ≤ 1 for all n. Therefore

− 1

n
≤ sin n

n
≤ 1

n
⇒ lim

n→∞

sin n

n
= 0

because of limn→∞(−1/n) = limn→∞(1/n) = 0 and the use of the Sandwich Theorem.
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Example:

Find lim
n→∞

1

2n
.

1/2n must always lie between 0 and 1/n (e.g. 1

2
< 1, 1

4
< 1

2
, 1

8
< 1

3
, 1

16
< 1

4
, . . . ). Therefore

0 ≤ 1

2n
≤ 1

n
⇒ lim

n→∞

1

2n
= 0 .

The limits of sequences can also be determined by using the following theorem:

Example:

Determine the limit of the sequence
{

21/n
}

as n → ∞.
We already know that the sequence

{

1

n

}

converges to 0 as n → ∞. Let an = 1/n, f(x) = 2x

and L = 0 in the continuous function theorem for sequences. This gives

21/n = f(1/n) → f(L) = 20 = 1 as n → ∞ .

Hence the sequence
{

21/n
}

converges to 1.

We can also make use of l’Hôpital’s Rule to find the limits of sequences. To do so we need
to make use of the following theorem:

Example:

Show that lim
n→∞

ln n√
n

= 0.

lim
n→∞

ln n√
n

= lim
n→∞

1/n

(1/2)n−1/2

(using l’Hôpital’s Rule by treating n as a continuous real variable)

= lim
n→∞

2 · n1/2

n
= 2 lim

n→∞

1

n1/2
= 0 .


