

MTH4101 Calculus II

Lecture notes for Week 4 Derivatives, V, Series I

Thomas' Calculus, Sections 14.8, 10.1 and 10.2

Rainer Klages

School of Mathematical Sciences Queen Mary, University of London

Spring 2013

Lagrange Multipliers

We now consider the problem to find extrema of a function f(x, y, z) whose domain is constrained by another function g(x, y, z) = 0 to lie within some subset.

Suppose that f(x, y, z) and g(x, y, z) are differentiable and $\nabla g \neq 0$ when g(x, y, z) = 0. To find the **local maximum and minimum values** of f **subject to the constraint** g(x, y, z) = 0, we need to find the values of x, y, z and λ that simultaneously satisfy the equations

$$\nabla f = \lambda \nabla g$$
 and $g(x, y, z) = 0$.

This is the **Method of Lagrange Multipliers**. For functions of two variables the condition is similar but without the variable z.

We will see how the method works by considering two examples.¹

Example:

Find the greatest and smallest values that the function f(x, y) = xy takes on the ellipse

We need to find the extreme values of f(x, y) = xy subject to the constraint

$$g(x,y) = \frac{x^2}{8} + \frac{y^2}{2} - 1 = 0.$$

First, find the values of x, y and λ for which

$$\nabla f = \lambda \, \nabla g$$
 and $g(x, y) = 0$.

 $^{^1\}mathrm{A}$ detailed motivation and a sketch of the proof are provided in Thomas' Calculus, beginning of Section 14.8.

$$\nabla f = f_x \mathbf{i} + f_y \mathbf{j} = y \mathbf{i} + x \mathbf{j}$$

$$\nabla g = g_x \mathbf{i} + g_y \mathbf{j} = \frac{x}{4} \mathbf{i} + y \mathbf{j}.$$

Hence

$$y\mathbf{i} + x\mathbf{j} = \frac{\lambda}{4}x\mathbf{i} + \lambda y\mathbf{j}$$

Comparing components gives

$$y = \frac{\lambda}{4}x$$
, $x = \lambda y$.

Therefore

$$y = \frac{\lambda}{4}(\lambda y) = \frac{\lambda^2}{4}y.$$

Hence y = 0 or $\lambda = \pm 2$ and there are two cases to consider.

- 1. If y = 0, then x = y = 0. But (0, 0) does not lie on the ellipse, hence $y \neq 0$.
- 2. If $y \neq 0$, then $\lambda = \pm 2$ and $x = \pm 2y$. Substituting in g(x, y) = 0 gives

$$\frac{(\pm 2y)^2}{8} + \frac{y^2}{2} = 1 \qquad \Rightarrow 4y^2 + 4y^2 = 8 \qquad \Rightarrow y = \pm 1.$$

Therefore f(x, y) has its extreme values on the ellipse at the four points $(\pm 2, 1)$, $(\pm 2, -1)$. The extreme values are xy = 2 and xy = -2.

The level curves of f(x, y) = xy are the hyperbolas xy = c. The extreme values are the points on the ellipse when ∇f (red) is a scalar multiple of ∇g (blue):

Example:

Find the maximum and minimum values of the function f(x, y) = 3x + 4y on the circle $x^2 + y^2 = 1$.

$$f(x,y) = 3x + 4y$$
, $g(x,y) = x^2 + y^2 - 1$.

The Lagrange multiplier condition states that $\nabla f = \lambda \nabla g$, hence

$$3\mathbf{i} + 4\mathbf{j} = 2\lambda x\mathbf{i} + 2\lambda y\mathbf{j} \qquad \Rightarrow x = \frac{3}{2\lambda}, \quad y = \frac{2}{\lambda} \qquad (\lambda \neq 0; \text{ why?}).$$

Therefore x and y have the same sign.

The condition g(x, y) = 0 gives

$$x^2 + y^2 - 1 = 0$$

and this gives

$$\left(\frac{3}{2\lambda}\right)^2 + \left(\frac{2}{\lambda}\right)^2 - 1 = 0.$$

This gives

$$\frac{9}{4\lambda^2} + \frac{4}{\lambda^2} = 1 \qquad \Rightarrow 9 + 16 = 4\lambda^2 \qquad \Rightarrow \lambda = \pm \frac{5}{2}$$

Hence

$$x = \frac{3}{2\lambda} = \pm \frac{3}{5}, \qquad y = \frac{2}{\lambda} = \pm \frac{4}{5}$$

Therefore the function f(x, y) = 3x + 4y has extreme values at $(x, y) = \pm (3/5, 4/5)$.

The level curves of f(x, y) = 3x + 4y are the lines 3x + 4y = c. The further the lines lie from the origin, the larger the absolute value of f:

Sequences

A sequence is a list of numbers in a given *order*:

$$a_1, a_2, a_3, \ldots, a_n, \ldots$$

Each of the a_1 , a_2 , etc. represents a number; these are the *terms* of the sequence. For example

$$2, 4, 6, 8, \ldots, 2n, \ldots$$

has first term $a_1 = 2$, second term $a_2 = 4$ and *n*th term $a_n = 2n$. The integer *n* is called the *index* of a_n and denotes where a_n occurs in the list.

We can consider the sequence $a_1, a_2, a_3, \ldots, a_n, \ldots$ as a function that sends 1 to $a_1, 2$ to a_2 , etc. and in general sends the positive integer n to the nth term a_n .

DEFINITION Infinite Sequence

An **infinite sequence** of numbers is a function whose domain is the set of positive integers.

Sequences can be described by *rules* or by *listing terms*. For example,

$$a_{n} = \sqrt{n} \qquad \{a_{n}\} = \left\{\sqrt{1}, \sqrt{2}, \sqrt{3}, \dots, \sqrt{n}, \dots\right\}$$
$$b_{n} = (-1)^{n+1}(1/n) \qquad \{b_{n}\} = \left\{1, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{4}, \dots, (-1)^{n+1}\frac{1}{n}, \dots\right\}$$
$$c_{n} = (n-1)/n \qquad \{c_{n}\} = \left\{0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots, \frac{n-1}{n}, \dots\right\}$$
$$d_{n} = (-1)^{n+1} \qquad \{d_{n}\} = \left\{1, -1, 1, -1, \dots, (-1)^{n+1}, \dots\right\}$$

Sequences can be illustrated graphically either as points on a real axis or as the graph of a function defining the sequence:

Consider the following sequences:

$$\begin{cases} 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots, \frac{1}{n}, \dots \end{cases} \\ \begin{cases} 0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots, 1 - \frac{1}{n}, \dots \end{cases} \\ \begin{cases} \sqrt{1}, \sqrt{2}, \sqrt{3}, \sqrt{4}, \dots, \sqrt{n}, \dots \end{cases} \\ \{1, -1, 1, -1, \dots, (-1)^{n+1}, \dots \end{cases} \end{cases}$$

terms approach 0 as n gets large terms approach 1 as n gets large terms get larger than any number as n increases terms oscillate between 1 and -1, never converging to a single value

This leads to the definition of **convergence**, **divergence** and a **limit**:

DEFINITIONS Converges, Diverges, Limit The sequence $\{a_n\}$ converges to the number *L* if to every positive number ϵ there corresponds an integer *N* such that for all *n*,

 $n > N \implies |a_n - L| < \epsilon.$

If no such number L exists, we say that $\{a_n\}$ diverges. If $\{a_n\}$ converges to L, we write $\lim_{n\to\infty} a_n = L$, or simply $a_n \to L$, and call L the limit of the sequence

The concept of a limit is illustrated in the following figure:

Here $a_n \to L$ if y = L is a horizontal asymptote of the sequence of points $\{(n, a_n)\}$. We will now consider two examples of the application of the definitions.

Example:

We want to prove that

$$\lim_{n \to \infty} \frac{1}{n} = 0.$$

Let $\epsilon > 0$ be given. We need to find an integer N such that for all n,

$$n > N \quad \Rightarrow \quad \left| \frac{1}{n} - 0 \right| < \epsilon \,.$$

This condition will be satisfied provided $1/n < \epsilon$, which means $n > 1/\epsilon$. Therefore if N is any integer greater than $1/\epsilon$, the implication will hold for all n > N. Hence $\lim_{n\to\infty} (1/n) = 0$. For example, suppose we take $\epsilon = 0.01$ then the condition is just n > 100.

Example:

We want to prove that the sequence

$$\{1, -1, 1, -1, \dots, (-1)^{n+1}, \dots\}$$
 diverges.

proof by contradiction: Assume that the sequence converges to some number L. Choose $\epsilon = \frac{1}{2}$ in the definition of the limit and so all terms a_n of the sequence with n larger than some N must lie within $\epsilon = \frac{1}{2}$ of L:

$$n > N \quad \Rightarrow \quad |a_n - L| < \frac{1}{2}.$$

Since 1 is in every other term of the sequence, 1 must lie within ϵ of L. Hence

$$|1 - L| = |L - 1| < \frac{1}{2}$$
 or $\frac{1}{2} < L < \frac{3}{2}$.

Then -1 is also in every other term and so we must have

$$|L - (-1)| < \frac{1}{2}$$
 or $-\frac{3}{2} < L < -\frac{1}{2}$

However, this is a *contradiction*: Both conditions cannot be satisfied simultaneously. Therefore no such limit exists and so the sequence diverges. There is a second type of divergence:

DEFINITION Diverges to Infinity

The sequence $\{a_n\}$ diverges to infinity if for every number *M* there is an integer *N* such that for all *n* larger than *N*, $a_n > M$. If this condition holds we write

 $\lim_{n\to\infty}a_n=\infty \quad \text{or} \quad a_n\to\infty.$

Similarly if for every number *m* there is an integer *N* such that for all n > N we have $a_n < m$, then we say $\{a_n\}$ diverges to negative infinity and write

 $\lim_{n\to\infty}a_n=-\infty \quad \text{or} \quad a_n\to-\infty.$

Example:

$$\lim_{n \to \infty} \sqrt{n} = \infty \quad (\text{proof?})$$

note: The sequence $\{1, -2, 3, -4, 5, \ldots\}$ also diverges, but not to ∞ or $-\infty$.

Sequences are functions with domain restricted to $n \in \mathbb{N}$, hence:

TH	EOREM 1	
Let The	$\{a_n\}$ and $\{b_n\}$ be sequences e following rules hold if lim,	s of real numbers and let A and B be real numbers. $a_{n\to\infty} a_n = A$ and $\lim_{n\to\infty} b_n = B$.
1.	Sum Rule:	$\lim_{n\to\infty}(a_n+b_n)=A+B$
2.	Difference Rule:	$\lim_{n\to\infty}(a_n-b_n)=A-B$
3.	Product Rule:	$\lim_{n\to\infty}(a_n\cdot b_n)=A\cdot B$
4.	Constant Multiple Rule:	$\lim_{n\to\infty} (k \cdot b_n) = k \cdot B (\text{Any number } k)$
5.	Quotient Rule:	$\lim_{n\to\infty}\frac{a_n}{b_n}=\frac{A}{B}\qquad\text{if }B\neq 0$

We can use these rules to help us to calculate limits of sequences.

Example:

Find $\lim_{n \to \infty} \frac{n-1}{n}$.

$$\lim_{n \to \infty} \frac{n-1}{n} = \lim_{n \to \infty} \left(1 - \frac{1}{n} \right) = \lim_{n \to \infty} 1 - \lim_{n \to \infty} \frac{1}{n} = 1 - 0 = 1.$$

Example:

Find $\lim_{n \to \infty} \frac{5}{n^2}$.

$$\lim_{n \to \infty} \frac{5}{n^2} = 5 \cdot \lim_{n \to \infty} \frac{1}{n} \cdot \lim_{n \to \infty} \frac{1}{n} = 5 \cdot 0 \cdot 0 = 0$$

The **Sandwich Theorem for Sequences** provides another method for finding the limits of sequences:

THEOREM 2 The Sandwich Theorem for Sequences Let $\{a_n\}, \{b_n\}$, and $\{c_n\}$ be sequences of real numbers. If $a_n \le b_n \le c_n$ holds for all *n* beyond some index *N*, and if $\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = L$, then $\lim_{n\to\infty} b_n = L$ also.

Note that if $|b_n| \leq c_n$ and $c_n \to 0$ as $n \to \infty$, then $b_n \to 0$ also, because $-c_n \leq b_n \leq c_n$.

Example:

Find $\lim_{n\to\infty} \frac{\sin n}{n}$. By the properties of the sine function we have $-1 \leq \sin n \leq 1$ for all n. Therefore

$$-\frac{1}{n} \le \frac{\sin n}{n} \le \frac{1}{n} \qquad \Rightarrow \qquad \lim_{n \to \infty} \frac{\sin n}{n} = 0$$

because of $\lim_{n\to\infty}(-1/n) = \lim_{n\to\infty}(1/n) = 0$ and the use of the Sandwich Theorem.

Example:

Find $\lim_{n\to\infty} \frac{1}{2^n}$. 1/2ⁿ must always lie between 0 and 1/n (e.g. $\frac{1}{2} < 1, \frac{1}{4} < \frac{1}{2}, \frac{1}{8} < \frac{1}{3}, \frac{1}{16} < \frac{1}{4}, \dots$). Therefore

$$0 \le \frac{1}{2^n} \le \frac{1}{n} \qquad \Rightarrow \qquad \lim_{n \to \infty} \frac{1}{2^n} = 0.$$

The limits of sequences can also be determined by using the following theorem:

THEOREM 3 The Continuous Function Theorem for Sequences Let $\{a_n\}$ be a sequence of real numbers. If $a_n \rightarrow L$ and if f is a function that is continuous at L and defined at all a_n , then $f(a_n) \rightarrow f(L)$.

Example:

Determine the limit of the sequence $\{2^{1/n}\}$ as $n \to \infty$. We already know that the sequence $\{\frac{1}{n}\}$ converges to 0 as $n \to \infty$. Let $a_n = 1/n$, $f(x) = 2^x$ and L = 0 in the continuous function theorem for sequences. This gives

$$2^{1/n} = f(1/n) \to f(L) = 2^0 = 1$$
 as $n \to \infty$

Hence the sequence $\{2^{1/n}\}$ converges to 1.

We can also make use of l'Hôpital's Rule to find the limits of sequences. To do so we need to make use of the following theorem:

THEOREM 4 Suppose that f(x) is a function defined for all $x \ge n_0$ and that $\{a_n\}$ is a sequence of real numbers such that $a_n = f(n)$ for $n \ge n_0$. Then

$$\lim_{x \to \infty} f(x) = L \qquad \Longrightarrow \qquad \lim_{n \to \infty} a_n = L$$

Example:

Show that $\lim_{n \to \infty} \frac{\ln n}{\sqrt{n}} = 0.$ $\lim_{n \to \infty} \frac{\ln n}{\sqrt{n}} = \lim_{n \to \infty} \frac{1/n}{(1/2)n^{-1/2}}$ (using l'Hôpital's Rule by treating n as a continuous real variable) $= \lim_{n \to \infty} 2 \cdot \frac{n^{1/2}}{n} = 2 \lim_{n \to \infty} \frac{1}{n^{1/2}} = 0.$