MTH4100 Calculus I

Bill Jackson
School of Mathematical Sciences QMUL

Week 3, Semester 1, 2012

Example - average rate of change

Growth of a fruit fly population measured experimentally. It is straightforward to calculate the average rate of change from day 23 to day 45 .

Example - Instantaneous rate of change

We can also calculate the instantaneous rate of change at a particular time on a specific day, e.g. 00:00 on day 23 , by finding the average rates of change over increasingly short time intervals starting at time 00:00 on day 23:

\boldsymbol{Q}	Slope of $P Q=\Delta p / \Delta t$ (flies $/$ day $)$
$(45,340)$	$\frac{340-150}{45-23} \approx 8.6$
$(40,330)$	$\frac{330-150}{40-23} \approx 10.6$
$(35,310)$	$\frac{310-150}{35-23} \approx 13.3$
$(30,265)$	$\frac{265-150}{30-23} \approx 16.4$

The lines PQ approach the red tangent AB at the point P with slope

$$
\frac{350-0}{35-14} \simeq 16.7 \text { flies/day }
$$

Average rate of change

Definition The average rate of change of a function f over an interval $I=\left[x_{1}, x_{2}\right]$ is

$$
\begin{equation*}
\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=\frac{f\left(x_{1}+h\right)-f\left(x_{1}\right)}{h} \tag{1}
\end{equation*}
$$

where $h=x_{2}-x_{1} \neq 0$.

Average rate of change

Definition The average rate of change of a function f over an interval $I=\left[x_{1}, x_{2}\right]$ is

$$
\begin{equation*}
\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=\frac{f\left(x_{1}+h\right)-f\left(x_{1}\right)}{h} \tag{1}
\end{equation*}
$$

where $h=x_{2}-x_{1} \neq 0$.

To move from average rates of change to instantaneous rates of change we need to consider 'the limiting value' of (1) as h approaches zero.

Limits

Informal Definition Let f be a function defined everywhere in an open interval containing x_{0} (except possibly at x_{0} itself). If $f(x)$ gets 'arbitrarily close to' a number L for all x 'sufficiently close to' but not equal to x_{0}, then we say that f approaches the limit L as x approaches x_{0}, and we write

$$
\lim _{x \rightarrow x_{0}} f(x)=L
$$

This is read as "the limit of $f(x)$ as x approaches x_{0} is equal to L. ."

Informal Definition Let f be a function defined everywhere in an open interval containing x_{0} (except possibly at x_{0} itself). If $f(x)$ gets 'arbitrarily close to' a number L for all x 'sufficiently close to' but not equal to x_{0}, then we say that f approaches the limit L as x approaches x_{0}, and we write

$$
\lim _{x \rightarrow x_{0}} f(x)=L
$$

This is read as "the limit of $f(x)$ as x approaches x_{0} is equal to L." This definition is 'informal' because the terms "arbitrarily close to" and "sufficiently close to" are not precise. It will serve our purpose for this module (which is to get an intuitive understanding of limits). But it is still worthwhile to compare this informal definition with the precise definition.

Example

How does the function

$$
f(x)=\frac{x^{2}-1}{x-1}
$$

behave as x approaches 1 ?
We can simplify this formula for $f(x)$ when $x \neq 1$. We have:

$$
f(x)=\frac{(x-1)(x+1)}{x-1}=x+1 \text { for } x \neq 1
$$

Example

How does the function

$$
f(x)=\frac{x^{2}-1}{x-1}
$$

behave as x approaches 1 ?
We can simplify this formula for $f(x)$ when $x \neq 1$. We have:

$$
f(x)=\frac{(x-1)(x+1)}{x-1}=x+1 \text { for } x \neq 1
$$

This suggests that

$$
\lim _{x \rightarrow 1} f(x)=\lim _{x \rightarrow 1}(x+1)=1+1=2
$$

Example continued

(a) $f(x)=\frac{x^{2}-1}{x-1}$
(b) $g(x)= \begin{cases}\frac{x^{2}-1}{x-1}, & x \neq 1 \\ 1, & x=1\end{cases}$
(c) $h(x)=x+1$

Example continued

(a) $f(x)=\frac{x^{2}-1}{x-1}$

(b) $g(x)= \begin{cases}\frac{x^{2}-1}{x-1}, & x \neq 1 \\ 1, & x=1\end{cases}$

(c) $h(x)=x+1$

Note: The limit of a function at a point x_{0} does not depend on the value the function takes at x_{0}. The function f in the above example is not defined at $x=1$. But if we define a new function by choosing an arbitrary value for $f(1)$, then the new function will still have the same limit at $x=1$ as f, see graphs (b) and (c) above. Note, however, that only the function h shown in (c) has the property that the limit value and the function value at $x=1$ are the same i.e. $\lim _{x \rightarrow 1} h(x)=h(1)$.

Some functions can have limits at all point on the real line: (a) $f(x)=x$.

For any $x_{0} \in \mathbb{R}$ we have $\lim _{x \rightarrow x_{0}} f(x)=\lim _{x \rightarrow x_{0}} x=x_{0}$.
In particular

$$
\lim _{x \rightarrow 3} x=3
$$

Some functions can have limits at all point on the real line:
(b) $f(x)=k$ for some constant $k \in \mathbb{R}$.

For any $x_{0} \in \mathbb{R}$ we have $\lim _{x \rightarrow x_{0}} f(x)=\lim _{x \rightarrow x_{0}} k=k$.
For example, when $k=5$, we have

$$
\lim _{x \rightarrow-12} 5=\lim _{x \rightarrow 7} 5=5
$$

The following functions have no limit at $x=0$.
(a)

limit fails to exist because the function jumps as we approach $x=0$.

The following functions have no limit at $x=0$.
(b)

limit fails to exist because the functions becomes too large as we approach $x=0$.

The following functions have no limit at $x=0$.
(c)

limit fails to exist because the function oscillates too much as we approach $x=0$ from the right.

Limit laws

Theorem

Suppose that c, L, M are real numbers, and f and g are functions such that $\lim _{x \rightarrow c} f(x)=L$ and $\lim _{x \rightarrow c} g(x)=M$. Then:

Limit laws

Theorem

Suppose that c, L, M are real numbers, and f and g are functions such that $\lim _{x \rightarrow c} f(x)=L$ and $\lim _{x \rightarrow c} g(x)=M$. Then:
(1) Sum Rule: $\lim _{x \rightarrow c}(f(x)+g(x))=L+M$

Limit laws

Theorem

Suppose that c, L, M are real numbers, and f and g are functions such that $\lim _{x \rightarrow c} f(x)=L$ and $\lim _{x \rightarrow c} g(x)=M$. Then:
(1) Sum Rule: $\lim _{x \rightarrow c}(f(x)+g(x))=L+M$
(2) Difference Rule: $\lim _{x \rightarrow c}(f(x)-g(x))=L-M$

Limit laws

Theorem

Suppose that c, L, M are real numbers, and f and g are functions such that $\lim _{x \rightarrow c} f(x)=L$ and $\lim _{x \rightarrow c} g(x)=M$. Then:
(1) Sum Rule: $\lim _{x \rightarrow c}(f(x)+g(x))=L+M$
(2) Difference Rule: $\lim _{x \rightarrow c}(f(x)-g(x))=L-M$
(3) Constant Multiple Rule: $\lim _{x \rightarrow c}(k f(x))=k L$ for any constant $k \in \mathbb{R}$.

Limit laws

Theorem

Suppose that c, L, M are real numbers, and f and g are functions such that $\lim _{x \rightarrow c} f(x)=L$ and $\lim _{x \rightarrow c} g(x)=M$. Then:
(1) Sum Rule: $\lim _{x \rightarrow c}(f(x)+g(x))=L+M$
(2) Difference Rule: $\lim _{x \rightarrow c}(f(x)-g(x))=L-M$
(3) Constant Multiple Rule: $\lim _{x \rightarrow c}(k f(x))=k L$ for any constant $k \in \mathbb{R}$.
(9) Product Rule: $\lim _{x \rightarrow c}(f(x) g(x))=L M$

Limit laws

Theorem

Suppose that c, L, M are real numbers, and f and g are functions such that $\lim _{x \rightarrow c} f(x)=L$ and $\lim _{x \rightarrow c} g(x)=M$. Then:
(1) Sum Rule: $\lim _{x \rightarrow c}(f(x)+g(x))=L+M$
(2) Difference Rule: $\lim _{x \rightarrow c}(f(x)-g(x))=L-M$
(3) Constant Multiple Rule: $\lim _{x \rightarrow c}(k f(x))=k L$ for any constant $k \in \mathbb{R}$.
(9) Product Rule: $\lim _{x \rightarrow c}(f(x) g(x))=L M$
(3) Quotient Rule: $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{L}{M}, M \neq 0$

Limit laws

Theorem

Suppose that c, L, M are real numbers, and f and g are functions such that $\lim _{x \rightarrow c} f(x)=L$ and $\lim _{x \rightarrow c} g(x)=M$. Then:
(1) Sum Rule: $\lim _{x \rightarrow c}(f(x)+g(x))=L+M$
(2) Difference Rule: $\lim _{x \rightarrow c}(f(x)-g(x))=L-M$
(3) Constant Multiple Rule: $\lim _{x \rightarrow c}(k f(x))=k L$ for any constant $k \in \mathbb{R}$.
(9) Product Rule: $\lim _{x \rightarrow c}(f(x) g(x))=L M$
(3) Quotient Rule: $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{L}{M}, M \neq 0$
(6) Power Rule: $\lim _{x \rightarrow c}\left(f(x)^{r / s}\right)=L^{r / s}$ for any integers r, s such that $L^{r / s}$ is a real number.

Limits of polynomial and rational functions

We have seen that for any $c \in \mathbb{R}, \lim _{x \rightarrow c} x=c$ and, for any constant $k, \lim _{x \rightarrow c} k=k$.

Limits of polynomial and rational functions

We have seen that for any $c \in \mathbb{R}, \lim _{x \rightarrow c} x=c$ and, for any constant $k, \lim _{x \rightarrow c} k=k$.
We can combine these two results with the Limit Laws to calculate limits of functions that are algebraic combinations of the two functions $f(x)=x$ and $g(x)=k$ (such as polynomial and rational functions).

Limits of polynomial and rational functions

We have seen that for any $c \in \mathbb{R}, \lim _{x \rightarrow c} x=c$ and, for any constant $k, \lim _{x \rightarrow c} k=k$.
We can combine these two results with the Limit Laws to calculate limits of functions that are algebraic combinations of the two functions $f(x)=x$ and $g(x)=k$ (such as polynomial and rational functions).

$$
\begin{aligned}
& \text { THEOREM } 2 \text { Limits of Polynomials Can Be Found by Substitution } \\
& \text { If } P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0} \text {, then } \\
& \qquad \lim _{x \rightarrow c} P(x)=P(c)=a_{n} c^{n}+a_{n-1} c^{n-1}+\cdots+a_{0}
\end{aligned}
$$

Limits of polynomial and rational functions

We have seen that for any $c \in \mathbb{R}, \lim _{x \rightarrow c} x=c$ and, for any constant $k, \lim _{x \rightarrow c} k=k$.
We can combine these two results with the Limit Laws to calculate limits of functions that are algebraic combinations of the two functions $f(x)=x$ and $g(x)=k$ (such as polynomial and rational functions).

THEOREM 2 Limits of Polynomials Can Be Found by Substitution
If $P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$, then

$$
\lim _{x \rightarrow c} P(x)=P(c)=a_{n} c^{n}+a_{n-1} c^{n-1}+\cdots+a_{0}
$$

THEOREM 3 Limits of Rational Functions Can Be Found by Substitution If the Limit of the Denominator Is Not Zero
If $P(x)$ and $Q(x)$ are polynomials and $Q(c) \neq 0$, then

$$
\lim _{x \rightarrow c} \frac{P(x)}{Q(x)}=\frac{P(c)}{Q(c)}
$$

'Zero over zero'

Sometimes the numerator and denominator of a rational function can both become zero when we substitute a value of x. If this happens, we can try to first use an 'algebraic simplification' which gives us a non-zero denominator, and then calculate the limit by substitution.

'Zero over zero'

Sometimes the numerator and denominator of a rational function can both become zero when we substitute a value of x. If this happens, we can try to first use an 'algebraic simplification' which gives us a non-zero denominator, and then calculate the limit by substitution.

'Zero over zero'

Sometimes the numerator and denominator of a rational function can both become zero when we substitute a value of x. If this happens, we can try to first use an 'algebraic simplification' which gives us a non-zero denominator, and then calculate the limit by substitution.

