MTH4100 Calculus I

Bill Jackson
School of Mathematical Sciences QMUL

Week 3, Semester 1, 2012

Radians

The radian measure of an angle $A C B$ is the length θ of the arc $A B$ on the unit circle.

Radians

The radian measure of an angle $A C B$ is the length θ of the arc $A B$ on the unit circle.

Thus $s=r \theta$ is the length of the arc on a circle of radius r when the angle it subtends θ is measured in radians.

Radians

Conversion formula between degrees and radians: 360° corresponds to 2π, hence:
$\frac{\text { angle in radians }}{\text { angle in degrees }}=\frac{\pi}{180}$

Radians

Conversion formula between degrees and radians: 360° corresponds to 2π, hence:

$$
\frac{\text { angle in radians }}{\text { angle in degrees }}=\frac{\pi}{180}
$$

Angles are oriented:

- positive angle are measured counter-clockwise;
- negative angle are measured clockwise.

Radians

Angles can be larger (counter-clockwise) or smaller (clockwise) than 2π :

sine: $\quad \sin \theta=\frac{y}{r} \quad$ cosecant: $\quad \csc \theta=\frac{r}{y}$
cosine: $\quad \cos \theta=\frac{x}{r} \quad$ secant: $\quad \sec \theta=\frac{r}{x}$ tangent: $\tan \theta=\frac{y}{x} \quad$ cotangent: $\cot \theta=\frac{x}{y}$

sine: $\quad \sin \theta=\frac{y}{r} \quad$ cosecant: $\quad \csc \theta=\frac{r}{y}$ cosine: $\quad \cos \theta=\frac{x}{r} \quad$ secant: $\quad \sec \theta=\frac{r}{x}$ tangent: $\tan \theta=\frac{y}{x} \quad$ cotangent: $\cot \theta=\frac{x}{y}$
Note that these definitions hold not just for $0 \leq \theta \leq \pi / 2$ but for all $\infty<\theta<\infty$.

Some exact values

It is useful to memorize the following two special triangles because exact values of the trigonometric functions can be read from them.

Some exact values

It is useful to memorize the following two special triangles because exact values of the trigonometric functions can be read from them.

Examples:

$$
\cos \frac{\pi}{4}=\frac{1}{\sqrt{2}} \quad ; \quad \sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}
$$

Periodic functions

DEFINITION Periodic Function

A function $f(x)$ is periodic if there is a positive number p such that $f(x+p)=f(x)$ for every value of x. The smallest such value of p is the period of f.

Since for any angle $\theta \in \mathbb{R}$, all six trigonometric functions will take the same value at θ and $\theta+2 \pi$ (why?) all six trigonometric functions are periodic. We can determine their periods by considering their graphs:

Graphs of trigonometric functions

Domain: $-\infty<x<\infty$
Range: $-1 \leq y \leq 1$
Period: 2π
(a)

Domain: $x \neq \pm \frac{\pi}{2}, \pm \frac{3 \pi}{2}, \ldots$
Range: $\quad y \leq-1$ and $y \geq 1$
Period: 2π
(d)

Domain: $-\infty<x<\infty$
Range: $-1 \leq y \leq 1$
Period: 2π
(b)

Domain: $x \neq 0, \pm \pi, \pm 2 \pi, \ldots$
Range: $y \leq-1$ and $y \geq 1$ Period: 2π
(e)

Domain: $x \neq \pm \frac{\pi}{2}, \pm \frac{3 \pi}{2}, \ldots$
Range: $-\infty<y<\infty$
Period: $\pi \quad$ (c)

Domain: $x \neq 0, \pm \pi, \pm 2 \pi, \ldots$
Range: $-\infty<y<\infty$
Period: π
(f)

An important trigonometric identity

$$
\cos ^{2} \theta+\sin ^{2} \theta=1
$$

This follows by considering the corresponding triangle inside a unit circle:

An important trigonometric identity

$$
\cos ^{2} \theta+\sin ^{2} \theta=1
$$

This follows by considering the corresponding triangle inside a unit circle:

An identity is an equation which is valid for all values of the variable(s) it contains. The equation $\cos \theta=1$ is not an identity, because it is only true for some values of θ, not all.

Another important identity

$$
\cos (A-B)=\cos A \cos B+\sin A \sin B
$$

We can obtain many other identities for these two identities, see Thomas' Calculus, Section 1.3, p. 25-27.

Reading Assignment

Read Thomas' Calculus

- short paragraph about ellipses, p. 18/19
- Section 1.3, p. 25-27 about trigonometric function symmetries and identities You will need this for Coursework 2.

