MTH4100 Calculus I

Bill Jackson School of Mathematical Sciences QMUL

Week 3, Semester 1, 2012

Image: A math a math

The **radian measure** of an angle *ACB* is the length θ of the arc *AB* on the unit circle.

・ロト ・日下・ ・ ヨト

- ∢ ⊒ ▶

The **radian measure** of an angle *ACB* is the length θ of the arc *AB* on the unit circle.

Thus $s = r\theta$ is the length of the arc on a circle of radius r when the angle it subtends θ is measured in radians.

Radians

Conversion formula between degrees and radians:

 360° corresponds to 2π , hence:

angle in radians	π
angle in degrees	$=\frac{180}{180}$

・ロト ・日下・ ・ヨト

→ 프 → - 프

Radians

Conversion formula between degrees and radians:

360° corresponds to 2π , hence:

angle in radians	π
angle in degrees	$=\frac{1}{180}$

Angles are oriented:

- *positive angle* are measured counter-clockwise;
- negative angle are measured clockwise.

Angles can be *larger* (counter-clockwise) or *smaller* (clockwise) than 2π :

<ロ> (日) (日) (日) (日) (日)

Trigonometric functions

sine: $\sin \theta = \frac{y}{r}$ cosecant: $\csc \theta = \frac{r}{y}$ cosine: $\cos \theta = \frac{x}{r}$ secant: $\sec \theta = \frac{r}{x}$ tangent: $\tan \theta = \frac{y}{x}$ cotangent: $\cot \theta = \frac{x}{y}$

Trigonometric functions

sine: $\sin \theta = \frac{y}{r}$ cosecant: $\csc \theta = \frac{r}{y}$ cosine: $\cos \theta = \frac{x}{r}$ secant: $\sec \theta = \frac{r}{x}$ tangent: $\tan \theta = \frac{y}{x}$ cotangent: $\cot \theta = \frac{x}{y}$ Note that these definitions hold not just for $0 \le \theta \le \pi/2$ but for all $\infty < \theta < \infty$.

Some exact values

It is useful to memorize the following two special triangles because *exact values* of the trigonometric functions can be read from them.

Some exact values

It is useful to memorize the following two special triangles because *exact values* of the trigonometric functions can be read from them.

Examples:

$$\cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}$$
; $\sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}$

DEFINITION Periodic Function

A function f(x) is **periodic** if there is a positive number p such that f(x + p) = f(x) for every value of x. The smallest such value of p is the **period** of f.

Since for any angle $\theta \in \mathbb{R}$, all six trigonometric functions will take the same value at θ and $\theta + 2\pi$ (why?) all six trigonometric functions are periodic. We can determine their periods by considering their graphs:

Graphs of trigonometric functions

Range: $-1 \le y \le 1$ Period: 2π (a)

Domain: $-\infty < x < \infty$ Range: $-1 \le y \le 1$ Period: 2π (b)

Domain: $x \neq 0, \pm \pi, \pm 2\pi, \dots$ Range: $y \leq -1$ and $y \geq 1$ Period: 2π

(e)

(日) (四) (E) (E) (E)

An important trigonometric identity

$$\cos^2\theta+\sin^2\theta=1$$

This follows by considering the corresponding triangle inside a unit circle:

An important trigonometric identity

$$\cos^2\theta+\sin^2\theta=1$$

This follows by considering the corresponding triangle inside a unit circle:

An **identity** is an equation which is valid for *all* values of the variable(s) it contains. The equation $\cos \theta = 1$ is *not* an identity, because it is only true for *some* values of θ , not all.

$$\cos(A-B) = \cos A \cos B + \sin A \sin B$$

We can obtain many other identities for these two identities, see Thomas' Calculus, Section 1.3, p. 25-27.

Read Thomas' Calculus

- short paragraph about ellipses, p. 18/19
- Section 1.3, p. 25-27 about trigonometric function symmetries and identities
 - You will need this for Coursework 2.