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Trigonometric functions

The radian measure of the angle ACB is the length θ of the arc AB on the unit circle.

Thus s = rθ is the length of the arc on a circle of radius r when the angle it subtends θ is
measured in radians.

Conversion formula between degrees and radians: 360◦ corresponds to 2π, hence:

angle in radians

angle in degrees
=

π

180

Note that:

• angles are oriented;

• positive angle are measured counter-clockwise;

• negative angle are measured clockwise.
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Note that angles can be larger (counter-clockwise) or smaller (clockwise) than 2π:

The six basic trigonometric functions:

sine: sin θ = y
r

cosecant: csc θ = r
y

cosine: cos θ = x
r

secant: sec θ = r
x

tangent: tan θ = y
x

cotangent: cot θ = x
y

Note that these definitions hold not just for 0 ≤ θ ≤ π/2 but for all ∞ < θ < ∞.
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It is useful to memorize the following two special triangle because exact values of the trigono-
metric functions can be read from them.

Examples:
(a) cos

π

4
=

1√
2

; sin
π

3
=

√
3

2

(b)

sin

(

2

3
π

)

=
y

r
=

√
3

2
csc

(

2

3
π

)

=
r

y
=

2√
3

cos

(

2

3
π

)

=
x

r
= −1

2
sec

(

2

3
π
)

= r
x
= −2

tan

(

2

3
π

)

=
y

x
= −

√
3 cot

(

2

3
π

)

=
x

y
= − 1√

3



5

Since for any angle θ ∈ R, all six trigonometric functions will take the same value at θ and
θ + 2π (why?) all six trigonometric functions are periodic. We can determine their periods
by considering their graphs:
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Some important trigonometric identities
We first state a result which extends Pythagorus’ Theorem.

Theorem 1 (The law of the cosine) Suppose a, b, c are the lengths of three sides of a

triange and the angle between the sides of lengths a, b is θ. Then

c2 = a2 + b2 − 2ab cos θ.

Proof See Thomas’ Calculus, p. 26-27.

We can use this result to obtain our first trigonometric identity.1

Theorem 2 Suppose θ, φ ∈ R. Then

cos(θ − φ) = cos θ cos φ+ sin θ sinφ (1)

Proof See Thomas’ Calculus, p.29, Exercise 57.

We can use (1) to deduce many other trigonometric identities. For example

• If we take φ = θ in (1) we obtain

1 = cos2 θ + sin2 θ.

• If we take φ = −θ in (1) we obtain

cos(2θ) = cos2 θ − sin2 θ.

• If we take θ = π/2− A and φ = B in (1) we obtain

sin(A+B) = sinA cosB + cosA sinB.

Reading Assignment: Read Thomas’ Calculus

• short paragraph about ellipses, p. 18/19

• Section 1.3, p. 25-28 about trigonometric function symme-

tries and identities

You will need this for Coursework 2.

1An identity is an equation which is valid for all values of the variable(s) it contains. The equation
cos θ = 1 is not an identity, because it is only true for some values of θ, not all.
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Rates of change and limits

Example: growth of a fruit fly population measured experimentally. It is straightforward
to calculate the average rate of change from day 23 to day 45.

We can also calculate the instantaneous rate of change at a particular time on a specific
day, e.g. 00:00 on day 23, by finding the average rates of change over increasingly short time

intervals starting at time 00:00 on day 23:

The lines PQ approach the red tangent AB at the point P with slope

350− 0

35− 14
≃ 16.7 flies/day
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Definition The average rate of change of a function f over an interval I = [x1, x2] is

f(x2)− f(x1)

x2 − x1

=
f(x1 + h)− f(x1)

h
(2)

where h = x2 − x1 6= 0.

To move from average rates of change to instantaneous rates of change we need to consider
‘the limiting value’ of (2) as h approaches zero.

Informal Definition Let f be a function defined everywhere in an open interval containing
x0 (except possibly at x0 itself). If f(x) gets ‘arbitrarily close’ to a number L for all x
‘sufficiently close to’ but not equal to x0, then we say that f approaches the limit L as x
approaches x0, and we write

lim
x→x0

f(x) = L .

This is read as “the limit of f(x) as x approaches x0 is equal to L.”2

Example: How does the function

f(x) =
x2 − 1

x− 1

behave as x approaches 1?
We can simplify this formula for f(x) when x 6= 1. We have:

f(x) =
(x− 1)(x+ 1)

x− 1
= x+ 1 for x 6= 1 .

This suggests that
lim
x→1

f(x) = lim
x→1

(x+ 1) = 1 + 1 = 2,

see graph (a) below.

2 This definition is ‘informal’ because the terms “arbitrarily close to” and “sufficiently close to” are not
precise. It will serve our purpose for this module (which is to get an intuitive understanding of limits). But
it is still worthwhile to compare the informal definition with the precise definition below.

Definition Let f be a function defined everywhere in an open interval containing x0 (except possibly at x0

itself). Then we say that f approaches the limit L as x approaches x0 if, for all real numbers a > 0, we can
choose a real number b > 0 such that we have |f(x) − L| < a whenever 0 < |x− x0| < b.

This definition will be used next year in MTH5104 Convergence and Continuity. If you want to find out
more now you should read Thomas’ Calculus, Section 2.3.
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Note: The limit of a function at a point x0 does not depend on the value the function takes
at x0. The function f in the above example is not defined at x = 1. But if we define a
new function by choosing an arbitrary value for f(1), then the new function will still have
the same limit at x = 1 as f , see graphs (b) and (c) above. Note, however, that only the
function h shown in (c) has the property that the limit value and the function value at x = 1
are the same i.e. limx→1 h(x) = h(1).

Some functions can have limits at all point on the real line. For example:
(a) f(x) = x.

For any x0 ∈ R we have lim
x→x0

f(x) = lim
x→x0

x = x0. For example lim
x→3

x = 3.

(b) f(x) = k for some constant k ∈ R.

For any x0 ∈ R we have lim
x→x0

f(x) = lim
x→x0

k = k. For example, when k = 5, we have

lim
x→−12

5 = lim
x→7

5 = 5.
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For other functions, limits can fail to exist at some points. For example, the following func-
tions have no limit at x = 0.

(a)

limit fails to exist because the function jumps as we approach x = 0.

(b)

limit fails to exist because the function becomes too large as we approach x = 0.

(c)

limit fails to exist because the function oscillate too much as we approach x = 0.
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We have seen that for any c ∈ R and any constant k:

lim
x→c

x = c

and

lim
x→c

k = k.

The following theorem allows us to use these two results to calculate limits of functions
that are algebraic combinations of the above two functions (such as polynomial and rational
functions).

Theorem 3 (Limit laws) Suppose that c, L,M are real numbers, and f and g are func-

tions such that limx→c f(x) = L and limx→c g(x) = M . Then

1. Sum Rule: lim
x→c

(f(x) + g(x)) = L+M

The limit of the sum of two functions is the sum of their limits.

2. Difference Rule: lim
x→c

(f(x)− g(x)) = L−M

3. Constant Multiple Rule: lim
x→c

(kf(x)) = kL for any constant k ∈ R.

4. Product Rule: lim
x→c

(f(x)g(x)) = LM

5. Quotient Rule: lim
x→c

f(x)

g(x)
=

L

M
, M 6= 0

6. Power Rule: lim
x→c

(f(x))r/s = Lr/s for any integers r, s such that Lr/s is a real number.

To prove this theorem we need to use the precise definition of a limit, see Thomas’ Calculus
Section 2.3 and Appendix 2, or MTH5104. (We cannot prove anything using our intuitive
definition of a limit!)

Examples: Find limx→3 f(x) when

• f(x) = x3 − 4x+ 2. We have

lim
x→3

(x3 − 4x+ 2) = lim
x→3

x3 − lim
x→3

4x+ lim
x→3

2 [by Theorem 3(1,2)]

= 33 − 4 · 3 + 2 [by Theorem 3(3)]

= 17

• f(x) =
√
4x2 − 3. We have limx→3(4x

2 − 3) = 4 · 32 − 3 = 33 as in the previous
example. Hence

lim
x→3

√
4x2 − 3 =

√
33 [by Theorem 3(6)]

A similar argument shows that we can find limits of any polynomial function just by ‘sub-
stituting the value of x’.
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More generally we can find limits of any rational functions by ‘substituting the value of x’
as long as the denominator does not become zero.

Example:

lim
x→1

x2 + x− 1

x2 − 2x
=

12 + 1− 1

12 − 2
= −1.

Sometimes the numerator and denominator of a rational function can both become zero when
we substitute a value of x. If this happens, we can try to first use an ‘algebraic simplification’
which gives us a non-zero denominator, and then calculate the limit by substitution.
Examples:

• Evaluate

lim
x→1

x2 + x− 2

x2 − x
.

When we substitute x = 1 the numerator and denominator both become zero. But an
algebraic simplification is possible:

x2 + x− 2

x2 − x
=

(x+ 2)(x− 1)

x(x− 1)
=

x+ 2

x
when x 6= 1.

Therefore,

lim
x→1

x2 + x− 2

x2 − x
= lim

x→1

x+ 2

x
= 3.

• Evaluate

lim
x→0

√
x2 + 100− 10

x2
.

Algebraic simplification
√
x2 + 100− 10

x2
=

√
x2 + 100− 10

x2
×

√
x2 + 100 + 10√
x2 + 100 + 10

=
(x2 + 100)− 100

x2(
√
x2 + 100 + 10)

=
1√

x2 + 100 + 10
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when x 6= 0. Therefore

lim
x→0

√
x2 + 100− 10

x2
= lim

x→0

1√
x2 + 100 + 10

=
1

20


