MTH4101 Calculus II
 Lecture notes for Week 3 Derivatives V

Thomas' Calculus, Sections 14.5 to 14.7

Rainer Klages
School of Mathematical Sciences
Queen Mary, University of London

Spring 2013

DEFINITION Gradient Vector

The gradient vector (gradient) of $f(x, y)$ at a point $P_{0}\left(x_{0}, y_{0}\right)$ is the vector

$$
\nabla f=\frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j}
$$

obtained by evaluating the partial derivatives of f at P_{0}.

The expression $\nabla f=\operatorname{grad} f$ is called "grad f ", "gradient of f ", "del f " or "nabla f ". We can now write the directional derivative using the gradient:

Theorem: Directional Derivative If $f(x, y)$ is differentiable in an open region containing $P_{0}\left(x_{0}, y_{0}\right)$ then

$$
\left(\frac{\mathrm{d} f}{\mathrm{~d} s}\right)_{\mathbf{u}, P_{0}}=(\nabla f)_{P_{0}} \cdot \mathbf{u}
$$

which is the scalar product of grad f at P_{0} and \mathbf{u}.

Example:

Find the derivative of $f(x, y)=x e^{y}+\cos (x y)$ at the point $(2,0)$ in the direction of $\mathbf{v}=3 \mathbf{i}-4 \mathbf{j}$. The unit vector is

$$
\mathbf{u}=\frac{\mathbf{v}}{|\mathbf{v}|}=\frac{\mathbf{v}}{\sqrt{3^{2}+4^{2}}}=\frac{3}{5} \mathbf{i}-\frac{4}{5} \mathbf{j} .
$$

Now

$$
\begin{aligned}
f_{x}(2,0) & =\left.\left(e^{y}-y \sin (x y)\right)\right|_{(2,0)}=e^{0}-0=1 \\
f_{y}(2,0) & =\left.\left(x e^{y}-x \sin (x y)\right)\right|_{(2,0)}=2 e^{0}-2 \cdot 0=2
\end{aligned}
$$

Hence

$$
\left.\nabla f\right|_{(2,0)}=f_{x}(2,0) \mathbf{i}+f_{y}(2,0) \mathbf{j}=\mathbf{i}+2 \mathbf{j}
$$

and so

$$
\left.D_{\mathbf{u}} f\right|_{(2,0)}=\left.\nabla f\right|_{(2,0)} \cdot \mathbf{u}=(\mathbf{i}+2 \mathbf{j}) \cdot\left(\frac{3}{5} \mathbf{i}-\frac{4}{5} \mathbf{j}\right)=\frac{3}{5}-\frac{8}{5}=-1 .
$$

Note that

$$
D_{\mathbf{u}} f=\nabla f \cdot \mathbf{u}=|\nabla f| \cos \theta
$$

where θ is the angle between the vectors ∇f and \mathbf{u}. This implies the following:

1. f increases most rapidly when $\cos \theta=1$ (i.e. \mathbf{u} is parallel to ∇f)
2. f decreases most rapidly when $\cos \theta=-1$ (i.e. \mathbf{u} is in opposite direction to ∇f)
3. f has zero change when $\cos \theta=0$ (i.e. \mathbf{u} is orthogonal to ∇f).

Point 3 implies (why?):
At every point $\left(x_{0}, y_{0}\right)$ in the domain of a differentiable function $f(x, y)$ the gradient of f is normal to the level curve through $\left(x_{0}, y_{0}\right)$.

Tangent lines to level curves are always normal to the gradient. If (x, y) is a point on the tangent line through the point $P\left(x_{0}, y_{0}\right)$ then

$$
\mathbf{T}=\left(x-x_{0}\right) \mathbf{i}+\left(y-y_{0}\right) \mathbf{j},
$$

is a vector parallel to it. The equation of the tangent is then

$$
\nabla f \cdot \mathbf{T}=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)=0 .
$$

Tangent Planes and Differentials

DEFINITIONS Tangent Plane, Normal Line

The tangent plane at the point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ on the level surface $f(x, y, z)=c$ of a differentiable function f is the plane through P_{0} normal to $\left.\nabla f\right|_{P_{0}}$. The normal line of the surface at P_{0} is the line through P_{0} parallel to $\left.\nabla f\right|_{P_{0}}$.

It follows ${ }^{1}$ that the equation of the tangent plane is

$$
\left.\nabla f\right|_{P_{0}} \cdot \overrightarrow{P_{0} P}=f_{x}\left(P_{0}\right)\left(x-x_{0}\right)+f_{y}\left(P_{0}\right)\left(y-y_{0}\right)+f_{z}\left(P_{0}\right)\left(z-z_{0}\right)=0
$$

and the equation of the normal line is

$$
x=x_{0}+f_{x}\left(P_{0}\right) t, \quad y=y_{0}+f_{y}\left(P_{0}\right) t, \quad z=z_{0}+f_{z}\left(P_{0}\right) t
$$

Example:

Find the tangent plane and normal line of the surface

$$
f(x, y, z)=x^{2}+y^{2}+z-9=0
$$

(a circular paraboloid) at the point $P_{0}(1,2,4)$

[^0]
where at the point P_{0} we have $f_{x}\left(P_{0}\right)=2, f_{y}\left(P_{0}\right)=4$ and $f_{z}\left(P_{0}\right)=1$. Therefore the equation of the tangent plane is
$$
2(x-1)+4(y-2)+(z-4)=0
$$
which simplifies to
$$
2 x+4 y+z=14 .
$$

The normal line to the surface at P_{0} is

$$
x=1+2 t, \quad y=2+4 t, \quad z=4+t
$$

We remark that the gradient has the following algebraic properties:

$$
\begin{aligned}
\nabla(k f) & =k \nabla f \quad \text { for any number } k \\
\nabla(f \pm g) & =\nabla f \pm \nabla g \\
\nabla(f-g) & =\nabla f-\nabla g \\
\nabla(f g) & =f \nabla g+g \nabla f \\
\nabla\left(\frac{f}{g}\right) & =\frac{g \nabla f-f \nabla g}{g^{2}}
\end{aligned}
$$

(the proof is straightforward and is left as an exercise)
Before we linearise a function of two variables, recall that a function $z=f(x, y)$ is differentiable at $\left(x_{0}, y_{0}\right)$ if

$$
\Delta z=f(x, y)-f\left(x_{0}, y_{0}\right)=f_{x}\left(x_{0}, y_{0}\right) \Delta x+f_{y}\left(x_{0}, y_{0}\right) \Delta y+\epsilon_{1} \Delta x+\epsilon_{2} \Delta y
$$

with $\epsilon_{1}, \epsilon_{2} \rightarrow 0(\Delta x, \Delta y \rightarrow 0)$. Solve for $f(x, y)$ and approximate:

DEFINITIONS Linearization, Standard Linear Approximation

The linearization of a function $f(x, y)$ at a point $\left(x_{0}, y_{0}\right)$ where f is differentiable is the function

$$
\begin{equation*}
L(x, y)=f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right) . \tag{5}
\end{equation*}
$$

The approximation

$$
f(x, y) \approx L(x, y)
$$

is the standard linear approximation of f at $\left(x_{0}, y_{0}\right)$.

Example:

Find the linearisation of

$$
f(x, y)=x^{2}-x y+\frac{1}{2} y^{2}+3
$$

at the point $(3,2)$.
We first evaluate f, f_{x} and f_{y} at the point $\left(x_{0}, y_{0}\right)=(3,2)$:

$$
\begin{aligned}
f(3,2) & =\left(x^{2}-x y+\frac{1}{2} y^{2}+3\right)_{(3,2)}=8 \\
f_{x}(3,2) & =\frac{\partial}{\partial x}\left(x^{2}-x y+\frac{1}{2} y^{2}+3\right)_{(3,2)}=(2 x-y)_{(3,2)}=4 \\
f_{y}(3,2) & =\frac{\partial}{\partial y}\left(x^{2}-x y+\frac{1}{2} y^{2}+3\right)_{(3,2)}=(-x+y)_{(3,2)}=-1
\end{aligned}
$$

giving

$$
\begin{aligned}
L(x, y) & =f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right) \\
& =8+(4)(x-3)+(-1)(y-2)=4 x-y-2 .
\end{aligned}
$$

Hence the linearisation of f at $(3,2)$ is $L(x, y)=4 x-y-2$.
Recall that for $y=f(x)$ we have defined the differential $d y=f^{\prime}(x) d x$.

DEFINITION Total Differential

If we move from $\left(x_{0}, y_{0}\right)$ to a point $\left(x_{0}+d x, y_{0}+d y\right)$ nearby, the resulting change

$$
d f=f_{x}\left(x_{0}, y_{0}\right) d x+f_{y}\left(x_{0}, y_{0}\right) d y
$$

in the linearization of f is called the total differential of \boldsymbol{f}.

Example:

The volume $V=\pi r^{2} h$ of a cylinder is to be calculated from measured values of r (the radius) and h (the height). Suppose that r is measured with an error of no more than 2%
and h with an error of no more than 0.5%. Estimate the resulting possible percentage error in the calculation of V.
First note that

$$
\left|\frac{d r}{r} 100\right| \leq 2,\left|\frac{d h}{h} 100\right| \leq 0.5
$$

Then

$$
d V=V_{r} d r+V_{h} d h=2 \pi r h d r+\pi r^{2} d h
$$

and so

$$
\frac{d V}{V}=\frac{2 \pi r h d r+\pi r^{2} d h}{\pi r^{2} h}=\frac{2 d r}{r}+\frac{d h}{h} .
$$

Hence

$$
\left|\frac{d V}{V}\right|=\left|2 \frac{d r}{r}+\frac{d h}{h}\right| \leq\left|2 \frac{d r}{r}\right|+\left|\frac{d h}{h}\right| \leq 2(0.02)+0.005=0.045 .
$$

Therefore the error is no more than 4.5%.

Extreme Values and Saddle Points

When we investigated extreme values for functions of one variable we looked for points where the graph had a horizontal tangent line. For functions of two variables we look for points where the surface defined by $z=f(x, y)$ has a horizontal tangent plane. This leads to the following definition:

DEFINITIONS Local Maximum, Local Minimum

Let $f(x, y)$ be defined on a region R containing the point (a, b). Then

1. $\quad f(a, b)$ is a local maximum value of f if $f(a, b) \geq f(x, y)$ for all domain points (x, y) in an open disk centered at (a, b).
2. $\quad f(a, b)$ is a local minimum value of f if $f(a, b) \leq f(x, y)$ for all domain points (x, y) in an open disk centered at (a, b).

Local maxima correspond to "mountain peaks" on the surface $z=f(x, y)$ and local minima correspond to "valley bottoms":

Local maxima

$$
\text { (no greater value of } f \text { nearby) }
$$

Local minimum

(no smaller value of f nearby)

Not too hard to show:

THEOREM 10—First Derivative Test for Local Extreme Values If $f(x, y)$ has a local maximum or minimum value at an interior point (a, b) of its domain and if the first partial derivatives exist there, then $f_{x}(a, b)=0$ and $f_{y}(a, b)=0$.

Define an important object:

DEFINITION Critical Point
An interior point of the domain of a function $f(x, y)$ where both f_{x} and f_{y} are zero or where one or both of f_{x} and f_{y} do not exist is a critical point of f.

Therefore local maxima and minima are critical points (why?) but critical points can also include saddle points:

DEFINITION Saddle Point

A differentiable function $f(x, y)$ has a saddle point at a critical point (a, b) if in every open disk centered at (a, b) there are domain points (x, y) where $f(x, y)>f(a, b)$ and domain points (x, y) where $f(x, y)<f(a, b)$. The corresponding point $(a, b, f(a, b))$ on the surface $z=f(x, y)$ is called a saddle point of the surface (Figure 14.40).

An example of a saddle point is the origin in the following surface:

Therefore, finding critical points of a function is not sufficient to identify the type of critical point (local maximum, local minimum or saddle point). To do this we need to make use of second partial derivatives.

THEOREM 11—Second Derivative Test for Local Extreme Values Suppose that $f(x, y)$ and its first and second partial derivatives are continuous throughout a disk centered at (a, b) and that $f_{x}(a, b)=f_{y}(a, b)=0$. Then
i) f has a local maximum at (a, b) if $f_{x x}<0$ and $f_{x x} f_{y y}-f_{x y}{ }^{2}>0$ at (a, b).
ii) f has a local minimum at (a, b) if $f_{x x}>0$ and $f_{x x} f_{y y}-f_{x y}{ }^{2}>0$ at (a, b).
iii) f has a saddle point at (a, b) if $f_{x x} f_{y y}-f_{x y}^{2}<0$ at (a, b).
iv) the test is inconclusive at (a, b) if $f_{x x} f_{y y}-f_{x y}{ }^{2}=0$ at (a, b). In this case, we must find some other way to determine the behavior of f at (a, b).

The quantity $f_{x x} f_{y y}-f_{x y}^{2}$ is called the discriminant or Hessian of the function f. In case you know already what a determinant is (otherwise you will learn this soon in Geometry 1), note that

$$
f_{x x} f_{y y}-f_{x y}^{2}=\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{x y} & f_{y y}
\end{array}\right| .
$$

Example:

Find the local extreme values of $f(x, y)=x y-x^{2}-y^{2}-2 x-2 y+4$ and determine the nature of each.
$f(x, y)$ is defined and differentiable for all points in its domain. Hence, at extreme values f_{x} and f_{y} are simultaneously zero. This gives the two equations

$$
f_{x}=y-2 x-2=0 ; \quad f_{y}=x-2 y-2=0
$$

The solution of these equations is $x=y=-2$. Hence $(-2,-2)$ is the only point where f may take an extreme value. Now take the second derivatives:

$$
f_{x x}=-2<0, \quad f_{y y}=-2, \quad f_{x y}=1
$$

At the point $(-2,-2)$,

$$
f_{x x} f_{y y}-f_{x y}^{2}=(-2)(-2)-1^{2}=3>0
$$

So $f_{x x}<0$ and $f_{x x} f_{y y}-f_{x y}^{2}>0$. Therefore f has a local maximum at $(-2,-2)$. The value of f at this point is $f(-2,-2)=8$.

Summary of Max-Min Tests

The extreme values of $f(x, y)$ can occur only at
i. boundary points of the domain of f
ii. critical points (interior points where $f_{x}=f_{y}=0$ or points where f_{x} or f_{y} fail to exist).

If the first- and second-order partial derivatives of f are continuous throughout a disk centered at a point (a, b) and $f_{x}(a, b)=f_{y}(a, b)=0$, the nature of $f(a, b)$ can be tested with the Second Derivative Test:
i. $f_{x x}<0$ and $f_{x x} f_{y y}-f_{x y}{ }^{2}>0$ at $(a, b) \Rightarrow$ local maximum
ii. $f_{x x}>0$ and $f_{x x} f_{y y}-f_{x y}{ }^{2}>0$ at $(a, b) \Rightarrow$ local minimum
iii. $f_{x x} f_{y y}-f_{x y}{ }^{2}<0$ at $(a, b) \Rightarrow$ saddle point
iv. $f_{x x} f_{y y}-f_{x y}{ }^{2}=0$ at $(a, b) \Rightarrow$ test is inconclusive.

[^0]: ${ }^{1}$ See Section 12.5 in Thomas' Calculus for details if you are in trouble with this.

