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The expression ∇f = grad f is called “grad f”, “gradient of f”, “del f” or “nabla f”.
We can now write the directional derivative using the gradient:

Theorem: Directional Derivative
If f(x, y) is differentiable in an open region containing P0(x0, y0) then

(

df

ds

)

u,P0

= (∇f)P0
· u ,

which is the scalar product of grad f at P0 and u.

Example:

Find the derivative of f(x, y) = x ey+cos(xy) at the point (2, 0) in the direction of v = 3i−4j.
The unit vector is

u =
v

|v| =
v√

32 + 42
=

3

5
i − 4

5
j .

Now

fx(2, 0) = (ey − y sin(xy))|(2,0) = e0 − 0 = 1

fy(2, 0) = (xey − x sin(xy))|(2,0) = 2e0 − 2 · 0 = 2 .

Hence
∇f |(2,0) = fx(2, 0)i + fy(2, 0)j = i + 2j

and so

Duf |(2,0) = ∇f |(2,0) · u = (i + 2j) ·
(

3

5
i − 4

5
j

)

=
3

5
− 8

5
= −1 .

Note that
Duf = ∇f · u = |∇f | cos θ

where θ is the angle between the vectors ∇f and u. This implies the following:

1. f increases most rapidly when cos θ = 1 (i.e. u is parallel to ∇f)

2. f decreases most rapidly when cos θ = −1 (i.e. u is in opposite direction to ∇f)

3. f has zero change when cos θ = 0 (i.e. u is orthogonal to ∇f).
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Point 3 implies (why?):

At every point (x0, y0) in the domain of a differentiable function f(x, y) the gradient of f

is normal to the level curve through (x0, y0).

Tangent lines to level curves are always normal to the gradient. If (x, y) is a point on the
tangent line through the point P (x0, y0) then

T = (x − x0)i + (y − y0)j ,

is a vector parallel to it. The equation of the tangent is then

∇f · T = fx(x0, y0)(x − x0) + fy(x0, y0)(y − y0) = 0 .

Tangent Planes and Differentials

It follows1 that the equation of the tangent plane is

∇f |P0
· ~P0P = fx(P0)(x − x0) + fy(P0)(y − y0) + fz(P0)(z − z0) = 0

and the equation of the normal line is

x = x0 + fx(P0)t , y = y0 + fy(P0)t , z = z0 + fz(P0)t .

Example:

Find the tangent plane and normal line of the surface

f(x, y, z) = x2 + y2 + z − 9 = 0

(a circular paraboloid) at the point P0(1, 2, 4)

1See Section 12.5 in Thomas’ Calculus for details if you are in trouble with this.



4

∇f |P0
= (2x i + 2y j + k)(1,2,4) = 2 i + 4 j + k

where at the point P0 we have fx(P0) = 2, fy(P0) = 4 and fz(P0) = 1. Therefore the
equation of the tangent plane is

2(x − 1) + 4(y − 2) + (z − 4) = 0

which simplifies to
2x + 4y + z = 14 .

The normal line to the surface at P0 is

x = 1 + 2t , y = 2 + 4t , z = 4 + t .

We remark that the gradient has the following algebraic properties:

∇(kf) = k∇f for any number k

∇(f ± g) = ∇f ±∇g

∇(f − g) = ∇f −∇g

∇(fg) = f ∇g + g∇f

∇
(

f

g

)

=
g∇f − f ∇g

g2

(the proof is straightforward and is left as an exercise)
Before we linearise a function of two variables, recall that a function z = f(x, y) is differen-

tiable at (x0, y0) if

∆z = f(x, y) − f(x0, y0) = fx(x0, y0)∆x + fy(x0, y0)∆y + ǫ1∆x + ǫ2∆y

with ǫ1, ǫ2 → 0 (∆x, ∆y → 0). Solve for f(x, y) and approximate:
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Example:

Find the linearisation of

f(x, y) = x2 − xy +
1

2
y2 + 3

at the point (3, 2).
We first evaluate f , fx and fy at the point (x0, y0) = (3, 2):

f(3, 2) =

(

x2 − xy +
1

2
y2 + 3

)

(3,2)

= 8

fx(3, 2) =
∂

∂x

(

x2 − xy +
1

2
y2 + 3

)

(3,2)

= (2x − y)(3,2) = 4

fy(3, 2) =
∂

∂y

(

x2 − xy +
1

2
y2 + 3

)

(3,2)

= (−x + y)(3,2) = −1

giving

L(x, y) = f(x0, y0) + fx(x0, y0)(x − x0) + fy(x0, y0)(y − y0)

= 8 + (4)(x − 3) + (−1)(y − 2) = 4x − y − 2 .

Hence the linearisation of f at (3, 2) is L(x, y) = 4x − y − 2.
Recall that for y = f(x) we have defined the differential dy = f ′(x)dx.

Example:

The volume V = πr2h of a cylinder is to be calculated from measured values of r (the
radius) and h (the height). Suppose that r is measured with an error of no more than 2%
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and h with an error of no more than 0.5%. Estimate the resulting possible percentage error
in the calculation of V .
First note that

∣

∣

∣

∣

dr

r
100

∣

∣

∣

∣

≤ 2 ,

∣

∣

∣

∣

dh

h
100

∣

∣

∣

∣

≤ 0.5 .

Then
dV = Vr dr + Vh dh = 2πrh dr + πr2 dh

and so
dV

V
=

2πrh dr + πr2 dh

πr2h
=

2 dr

r
+

dh

h
.

Hence
∣

∣

∣

∣

dV

V

∣

∣

∣

∣

=

∣

∣

∣

∣

2
dr

r
+

dh

h

∣

∣

∣

∣

≤
∣

∣

∣

∣

2
dr

r

∣

∣

∣

∣

+

∣

∣

∣

∣

dh

h

∣

∣

∣

∣

≤ 2(0.02) + 0.005 = 0.045 .

Therefore the error is no more than 4.5%.

Extreme Values and Saddle Points

When we investigated extreme values for functions of one variable we looked for points
where the graph had a horizontal tangent line. For functions of two variables we look for
points where the surface defined by z = f(x, y) has a horizontal tangent plane. This leads
to the following definition:

Local maxima correspond to “mountain peaks” on the surface z = f(x, y) and local minima
correspond to “valley bottoms”:
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Not too hard to show:

Define an important object:

Therefore local maxima and minima are critical points (why?) but critical points can also
include saddle points:

An example of a saddle point is the origin in the following surface:

Therefore, finding critical points of a function is not sufficient to identify the type of critical
point (local maximum, local minimum or saddle point). To do this we need to make use of
second partial derivatives.
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The quantity fxxfyy − f 2
xy is called the discriminant or Hessian of the function f . In case

you know already what a determinant is (otherwise you will learn this soon in Geometry
1), note that

fxxfyy − f 2
xy =

∣

∣

∣

∣

fxx fxy

fxy fyy

∣

∣

∣

∣

.

Example:

Find the local extreme values of f(x, y) = xy − x2 − y2 − 2x − 2y + 4 and determine the
nature of each.

f(x, y) is defined and differentiable for all points in its domain. Hence, at extreme values
fx and fy are simultaneously zero. This gives the two equations

fx = y − 2x − 2 = 0 ; fy = x − 2y − 2 = 0 .

The solution of these equations is x = y = −2. Hence (−2,−2) is the only point where f

may take an extreme value. Now take the second derivatives:

fxx = −2 < 0 , fyy = −2 , fxy = 1 .

At the point (−2,−2),

fxxfyy − f 2
xy = (−2)(−2) − 12 = 3 > 0 .

So fxx < 0 and fxxfyy − f 2
xy > 0. Therefore f has a local maximum at (−2,−2). The value

of f at this point is f(−2,−2) = 8.
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