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What is a function?

Definition A function f from a set D to a set Y is a rule that assigns an element f(x) of
Y to each element x of D.

Note that functions have a uniqueness property - there is only one value f(x) ∈ Y assigned
to each x ∈ D.

• The set D of all possible input values is called the domain of f .

• The set Y which contains all possible output values is called the codomain of f .

• The set R consisting of all possible output values of f(x) as x varies throughout D is
called the range of f .1

• We write f maps D to Y symbolically as f : D → Y .

• We write f maps x to f(x) symbolically as f : x 7→ f(x).

Note that different arrow symbols → and 7→ are used in each case.

We often think of the input and output values of a function as variables. The function tells
us how to determine the value of the output variable y from the value of the input variable
x. We write y = f(x) and refer to x as the independent variable and y as the dependent

variable. The function f acts like a ”black box” which inputs x and outputs y = f(x).

1Note that R ⊆ Y i.e. the range is contained in (but not necessarily equal to) the codomain.
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Examples:

y is the height of the floor of the lecture hall depending on the distance x from the white-
board;
y is the stock market index depending on the time x;
y is the volume of a sphere depending on its radius x.

In general the domain D and the codomain Y of a function f can be any sets. In this
module, however, we will always take D and Y to be subsets of R. In addition we will
often be lazy and not specify the domain and codomain of f explicitly: in this case we will
assume that the domain of f is the the largest set of real numbers for which the definition

of f makes sense and that the codomain of f is R.

Examples:

Function Domain Codomain Range

y = x2 (−∞,∞) R [0,∞)
y = 1/x (−∞, 0) ∪ (0,∞) R (−∞, 0) ∪ (0,∞)
y =

√
x [0,∞) R [0,∞)

y =
√
1− x2 [−1, 1] R [0, 1]

Remark: A function is fully specified by not only giving the rule f , but also giving its
domain D, and its codomain Y . Thus

f : R → R defined by f : x 7→ x2

and

g : [0,∞) → R defined by g : x 7→ x2

are different functions since they have different domains.

Definition The graph of a function f : D → R is of the set of all points (x, f(x)) in the
plane whose coordinates are the input-output pairs for f .

Example:



4

Given a function f , we can sketch its graph by plotting some of its points (x, f(x)) in the
plane and then ‘joining them up’. Calculus will help us do this more accurately.

The ‘y-coordinate’ is the height of the point (x, f(x)) above x.

Definition A curve is of the set of all points (x, y) in the cartesian plane whose coordinates
satisfy some equation involving the variables x, y.

The graph of a function f is a special kind of curve since it is defined by the equation
y = f(x). However some curves are not graphs of any function. To see this we use the
following observation.

Recall that a function f can have only one value f(x) assigned to each x in its domain.
This leads to the vertical line test:

No vertical line can intersect the graph of a function more than once.

Example

(a) x2 + y2 = 1
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The curve shown in (a) is not the graph of a function since it fails the vertical line test. The
curves in (b) and (c) are graphs of functions.

Definition A piecewise defined function is a function that is described by using different
formulas on different parts of its domain.

Examples:

• the absolute value function

f(x) = |x| =
{

x if x ≥ 0
−x if x < 0

• another piecewise defined func-
tion

f(x) =







−x if x < 0
x2 if 0 ≤ x ≤ 1
1 if x > 1
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• the floor function

f(x) = ⌊x⌋
is defined by taking ⌊x⌋ to be the greatest in-
teger which is less than or equal to x. Thus

⌊1.3⌋ = 1, ⌊−2.7⌋ = −3

• the ceiling function

f(x) = ⌈x⌉
is defined by taking ⌈x⌉ to be the smallest
integer which is greater than or equal to x.
Thus

⌈3.5⌉ = 4, ⌈−1.8⌉ = −1
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Some important functions

• linear function: f(x) = mx+ b for some m, b ∈ R

When b = 0, f(x) = mx and the graph of f is a line through the origin.

When m = 0, f(x) = b and f is a constant function.
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• power function: f(x) = xa for a ∈ R.

Graphs of f(x) = xa for a = 1, 2, 3, 4, 5

Graphs of f(x) = xa for a = −1,−2
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Graphs of f(x) = xa for a = 1
2
, 1
3
, 3
2
, 2
3

• polynomial function: p(x) = anx
n + an−1x

n−1 + . . .+ a1x+ a0 for n ∈ Z with n ≥ 0,

and a0, a1, . . . , an−1, an ∈ R with an 6= 0.
We say that: p(x) is a polynomial in x; a0, a1, . . . , an−1, an ∈ R are the coefficients of p(x); n
is the degree of p(x). Constant functions correspond to polynomials of degree zero. Linear
functions f(x) = mx+ b with m 6= 0 correspond to polynomials of degree one.

Three polynomial functions and their graphs
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• rational functions: f(x) =
p(x)

q(x)
where p(x) and q(x) are polynomials.

Note that the domain of f is {x ∈ R : q(x) 6= 0} since we can never divide by zero.

Three rational functions and their graphs

We will see many other types of functions later in this module. For example:

algebraic functions: any function constructed from polynomials using algebraic opera-
tions (including taking roots)

examples:

trigonometric functions

exponential and logarithmic functions
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Special types of functions

Definition A function f : D → R is increasing on some interval I ⊆ D if f(x1) ≤ f(x2)
whenever x1, x2 ∈ I and x1 ≤ x2. (Informally, f is increasing if the graph of f “climbs” or
“rises” as we move along I from left to right.)
Similarly f is decreasing on I if f(x1) ≥ f(x2) whenever x1, x2 ∈ I and x1 ≤ x2. (Informally,
f is decreasing if the graph of f “descends” or “falls” as we move along I from left to right.)

Examples:

function where increasing where decreasing

y = x2 0 ≤ x < ∞ −∞ < x ≤ 0
y = 1/x nowhere −∞ < x < 0 and 0 < x < ∞
y = 1/x2 −∞ < x < 0 0 < x < ∞
y = x2/3 0 ≤ x < ∞ −∞ < x ≤ 0

Definition A function f : R → R is even if f(−x) = f(x) for all x ∈ R. (This is the same
as saying its graph is symmetric about the y-axis.)
Similarly, f is odd if f(−x) = −f(x) for x ∈ R. (This is the same as saying its graph is
symmetric about the origin.)
Examples:

(a) f(x) = x2

f(−x) = (−x)2 = x2 = f(x) so f is an even function; its graph is symmetric about the

y-axis.
(b) f(x) = x3

f(−x) = (−x)3 = −x3 = −f(x): odd function; its graph is symmetric about the origin.
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(c) f(x) = x and g(x) = x+ 1

f(−x) = −x = −f(x) so f is an odd function

g(−x) = −x+ 1 6= g(x) and −g(x) = −x− 1 6= g(−x) so g is neither even nor odd.

Combining functions

Algebraic Combinations

Suppose f : D → R and g : E → R are functions. Then we can define new functions f + g,
f − g and fg with domain D ∩ E as follows:

(f + g)(x) = f(x) + g(x)

(f − g)(x) = f(x)− g(x)

(fg)(x) = f(x)g(x)

We can also define the function f/g with domain {x ∈ D ∩ E : g(x) 6= 0} by:

(f/g)(x) = f(x)/g(x)

We refer to these new functions as the sum, difference, product, and quotient of f and g. A
special case of the product is when we multiply a function g by a constant c ∈ R: we obtain
a new function cg where (cg)(x) = c g(x) by taking f to be the constant function f(x) = c
in the above definition of product.

Examples:

f(x) =
√
x domain D = [0,∞)

g(x) =
√
1− x domain E = (−∞, 1]

intersection of both domains:
D ∩ E = [0,∞) ∩ (−∞, 1] = [0, 1]
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function formula domain

f + g (f + g)(x) =
√
x+

√
1− x [0, 1]

f − g (f − g)(x) =
√
x−

√
1− x [0, 1]

g − f (g − f)(x) =
√
1− x−√

x [0, 1]

fg (fg)(x) = f(x)g(x) =
√

x(1− x) [0, 1]

f/g f
g
(x) = f(x)

g(x)
=

√

x
1−x

[0, 1) (x = 1 excluded)

g/f g
f
(x) = g(x)

f(x)
=

√

1−x
x

(0, 1] (x = 0 excluded)

Definition Suppose f : D → R and g : E → R are functions. Then the composite function
f ◦ g is defined by

(f ◦ g)(x) = f(g(x)).

(We read f ◦ g as “f composed with g”. We also refer to f ◦ g as “the composition of f
with g.”)

The domain of f ◦ g consists of the numbers x in the domain of g for which g(x) lies in the
domain of f , i.e. {x ∈ R : x ∈ E and g(x) ∈ D}.
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Examples: (a) Suppose

f(x) =
√
x domain D = [0,∞) range R = [0,∞)

g(x) = x+ 1 domain E = (−∞,∞) range S = (−∞,∞)

Then

composite domain

(f ◦ g)(x) = f(g(x)) =
√

g(x) =
√
x+ 1 [−1,∞)

(g ◦ f)(x) = g(f(x)) = f(x) + 1 =
√
x+ 1 [0,∞)

(f ◦ f)(x) = f(f(x)) =
√

f(x) =
√√

x = x1/4 [0,∞)
(g ◦ g)(x) = g(g(x)) = g(x) + 1 = x+ 2 (−∞,∞)

(b) Suppose

f(x) =
√
x domain D = [0,∞) range R = [0,∞)

g(x) = x2 domain E = (−∞,∞) range S = [0,∞)

Then

composite domain

(f ◦ g)(x) = |x| (−∞,∞)
(g ◦ f)(x) = x [0,∞)

Shifting the graph of a function

Suppose f is a function and c ∈ R. Let g and h be two new functions defined by g(x) =
f(x) + c and h(x) = f(x+ c). Then

• the graph of g is equal to the graph of f shifted up by c units.

• the graph of h is equal to the graph of f shifted to the left by c units.

Note that if c < 0 then a shift up by c units is actually a shift down, and a shift to the
left by c units is actually a shift to the right. Note also that g and h can both be obtained
from f by taking a composition with a linear function: if k(x) = x + c for all x ∈ R then
g = k ◦ f and h = f ◦ k.
Example:
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Scaling and reflecting the graph of a function

Suppose f is a function and cR. Let g and h be two new functions defined by g(x) = cf(x)
and h(x) = f(cx). If c > 0 then

• the graph of g is equal to the graph of f scaled by a factor of c along the y-axis.

• the graph of h is equal to the graph of f scaled by a factor of c along the x-axis.

Example

If c = −1 then

• the graph of g is equal to the graph of f reflected across the x-axis.

• the graph of h is equal to the graph of f reflected across the y-axis.

Example

More generally, when c < 0, we get a combination of a scaling and a reflection - see Exercise
Sheet 2.
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