
 Queen Mary University of London

MTH4100 Calculus

Lecture notes for Week 2
Thomas' Calculus, Sections 1.1 and 1.2

Prof. Bill Jackson

School of Mathematical Sciences
Queen Mary University of London

Autumn 2012

What is a function?

Definition A function f from a set D to a set Y is a rule that assigns an element $f(x)$ of Y to each element x of D.

Note that functions have a uniqueness property - there is only one value $f(x) \in Y$ assigned to each $x \in D$.

- The set D of all possible input values is called the domain of f.
- The set Y which contains all possible output values is called the codomain of f.
- The set R consisting of all possible output values of $f(x)$ as x varies throughout D is called the range of $f .{ }^{1}$
- We write f maps D to Y symbolically as $f: D \rightarrow Y$.
- We write f maps x to $f(x)$ symbolically as $f: x \mapsto f(x)$.

Note that different arrow symbols \rightarrow and \mapsto are used in each case.
We often think of the input and output values of a function as variables. The function tells us how to determine the value of the output variable y from the value of the input variable x. We write $y=f(x)$ and refer to x as the independent variable and y as the dependent variable. The function f acts like a "black box" which inputs x and outputs $y=f(x)$.

[^0]
Examples:

y is the height of the floor of the lecture hall depending on the distance x from the whiteboard;
y is the stock market index depending on the time x;
y is the volume of a sphere depending on its radius x.

In general the domain D and the codomain Y of a function f can be any sets. In this module, however, we will always take D and Y to be subsets of \mathbb{R}. In addition we will often be lazy and not specify the domain and codomain of f explicitly: in this case we will assume that the domain of f is the the largest set of real numbers for which the definition of f makes sense and that the codomain of f is \mathbb{R}.

Examples:

Function	Domain	Codomain	Range
$y=x^{2}$	$(-\infty, \infty)$	\mathbb{R}	$[0, \infty)$
$y=1 / x$	$(-\infty, 0) \cup(0, \infty)$	\mathbb{R}	$(-\infty, 0) \cup(0, \infty)$
$y=\sqrt{x}$	$[0, \infty)$	\mathbb{R}	$[0, \infty)$
$y=\sqrt{1-x^{2}}$	$[-1,1]$	\mathbb{R}	$[0,1]$

Remark: A function is fully specified by not only giving the rule f, but also giving its domain D, and its codomain Y. Thus

$$
f: \mathbb{R} \rightarrow \mathbb{R} \text { defined by } f: x \mapsto x^{2}
$$

and

$$
g:[0, \infty) \rightarrow \mathbb{R} \text { defined by } g: x \mapsto x^{2}
$$

are different functions since they have different domains.

Definition The graph of a function $f: D \rightarrow \mathbb{R}$ is of the set of all points $(x, f(x))$ in the plane whose coordinates are the input-output pairs for f.

Example:

Given a function f, we can sketch its graph by plotting some of its points $(x, f(x))$ in the plane and then 'joining them up'. Calculus will help us do this more accurately.

The ' y-coordinate' is the height of the point $(x, f(x))$ above x.
Definition A curve is of the set of all points (x, y) in the cartesian plane whose coordinates satisfy some equation involving the variables x, y.

The graph of a function f is a special kind of curve since it is defined by the equation $y=f(x)$. However some curves are not graphs of any function. To see this we use the following observation.

Recall that a function f can have only one value $f(x)$ assigned to each x in its domain. This leads to the vertical line test:

No vertical line can intersect the graph of a function more than once.

Example

(a) $x^{2}+y^{2}=1$

The curve shown in (a) is not the graph of a function since it fails the vertical line test. The curves in (b) and (c) are graphs of functions.
Definition A piecewise defined function is a function that is described by using different formulas on different parts of its domain.

Examples:

- the absolute value function

$$
f(x)=|x|=\left\{\begin{aligned}
x & \text { if } x \geq 0 \\
-x & \text { if } x<0
\end{aligned}\right.
$$

- another piecewise defined function

$$
f(x)=\left\{\begin{aligned}
-x & \text { if } x<0 \\
x^{2} & \text { if } 0 \leq x \leq 1 \\
1 & \text { if } x>1
\end{aligned}\right.
$$

- the floor function

$$
f(x)=\lfloor x\rfloor
$$

is defined by taking $\lfloor x\rfloor$ to be the greatest integer which is less than or equal to x. Thus

$$
\lfloor 1.3\rfloor=1,\lfloor-2.7\rfloor=-3
$$

- the ceiling function

$$
f(x)=\lceil x\rceil
$$

is defined by taking $\lceil x\rceil$ to be the smallest integer which is greater than or equal to x. Thus

$$
\lceil 3.5\rceil=4,\lceil-1.8\rceil=-1
$$

Some important functions

- linear function: $f(x)=m x+b$ for some $m, b \in \mathbb{R}$

When $b=0, f(x)=m x$ and the graph of f is a line through the origin.

When $m=0, f(x)=b$ and f is a constant function.

- power function: $f(x)=x^{a}$ for $a \in \mathbb{R}$.

Graphs of $f(x)=x^{a}$ for $a=1,2,3,4,5$

Graphs of $f(x)=x^{a}$ for $a=-1,-2$

Graphs of $f(x)=x^{a}$ for $a=\frac{1}{2}, \frac{1}{3}, \frac{3}{2}, \frac{2}{3}$

- polynomial function: $p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$ for $n \in \mathbb{Z}$ with $n \geq 0$, and $a_{0}, a_{1}, \ldots, a_{n-1}, a_{n} \in \mathbb{R}$ with $a_{n} \neq 0$.
We say that: $p(x)$ is a polynomial in $x ; a_{0}, a_{1}, \ldots, a_{n-1}, a_{n} \in \mathbb{R}$ are the coefficients of $p(x) ; n$ is the degree of $p(x)$. Constant functions correspond to polynomials of degree zero. Linear functions $f(x)=m x+b$ with $m \neq 0$ correspond to polynomials of degree one.
Three polynomial functions and their graphs

(a)

(b)

(c)
- rational functions: $f(x)=\frac{p(x)}{q(x)}$ where $p(x)$ and $q(x)$ are polynomials.

Note that the domain of f is $\{x \in \mathbb{R}: q(x) \neq 0\}$ since we can never divide by zero.
Three rational functions and their graphs

(a)

(b)

(c)

We will see many other types of functions later in this module. For example:
algebraic functions: any function constructed from polynomials using algebraic operations (including taking roots)
examples:

(a)

(b)

(c)

trigonometric functions

exponential and logarithmic functions

Special types of functions

Definition A function $f: D \rightarrow \mathbb{R}$ is increasing on some interval $I \subseteq D$ if $f\left(x_{1}\right) \leq f\left(x_{2}\right)$ whenever $x_{1}, x_{2} \in I$ and $x_{1} \leq x_{2}$. (Informally, f is increasing if the graph of f "climbs" or "rises" as we move along I from left to right.)
Similarly f is decreasing on I if $f\left(x_{1}\right) \geq f\left(x_{2}\right)$ whenever $x_{1}, x_{2} \in I$ and $x_{1} \leq x_{2}$. (Informally, f is decreasing if the graph of f "descends" or "falls" as we move along I from left to right.)

Examples:

function	where increasing	where decreasing
$y=x^{2}$	$0 \leq x<\infty$	$-\infty<x \leq 0$
$y=1 / x$	nowhere	$-\infty<x<0$ and $0<x<\infty$
$y=1 / x^{2}$	$-\infty<x<0$	$0<x<\infty$
$y=x^{2 / 3}$	$0 \leq x<\infty$	$-\infty<x \leq 0$

Definition A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is even if $f(-x)=f(x)$ for all $x \in \mathbb{R}$. (This is the same as saying its graph is symmetric about the y-axis.)
Similarly, f is odd if $f(-x)=-f(x)$ for $x \in \mathbb{R}$. (This is the same as saying its graph is symmetric about the origin.)

Examples:

(a) $f(x)=x^{2}$

$f(-x)=(-x)^{2}=x^{2}=f(x)$ so f is an even function; its graph is symmetric about the y-axis.
(b) $f(x)=x^{3}$

$f(-x)=(-x)^{3}=-x^{3}=-f(x)$: odd function; its graph is symmetric about the origin.
(c) $f(x)=x$ and $g(x)=x+1$

$f(-x)=-x=-f(x)$ so f is an odd function
$g(-x)=-x+1 \neq g(x)$ and $-g(x)=-x-1 \neq g(-x)$ so g is neither even nor odd.

Combining functions

Algebraic Combinations

Suppose $f: D \rightarrow \mathbb{R}$ and $g: E \rightarrow \mathbb{R}$ are functions. Then we can define new functions $f+g$, $f-g$ and $f g$ with domain $D \cap E$ as follows:

$$
\begin{aligned}
(f+g)(x) & =f(x)+g(x) \\
(f-g)(x) & =f(x)-g(x) \\
(f g)(x) & =f(x) g(x)
\end{aligned}
$$

We can also define the function f / g with domain $\{x \in D \cap E: g(x) \neq 0\}$ by:

$$
(f / g)(x)=f(x) / g(x)
$$

We refer to these new functions as the sum, difference, product, and quotient of f and g. A special case of the product is when we multiply a function g by a constant $c \in \mathbb{R}$: we obtain a new function $c g$ where $(c g)(x)=c g(x)$ by taking f to be the constant function $f(x)=c$ in the above definition of product.

Examples:

$$
\begin{array}{cc}
f(x)=\sqrt{x} & \text { domain } D=[0, \infty) \\
g(x)=\sqrt{1-x} & \text { domain } E=(-\infty, 1]
\end{array}
$$

intersection of both domains:

$$
D \cap E=[0, \infty) \cap(-\infty, 1]=[0,1]
$$

function	formula	domain
$f+g$	$(f+g)(x)=\sqrt{x}+\sqrt{1-x}$	$[0,1]$
$f-g$	$(f-g)(x)=\sqrt{x}-\sqrt{1-x}$	$[0,1]$
$g-f$	$(g-f)(x)=\sqrt{1-x}-\sqrt{x}$	$[0,1]$
$f g$	$(f g)(x)=f(x) g(x)=\sqrt{x(1-x)}$	$[0,1]$
f / g	$\frac{f}{g}(x)=\frac{f(x)}{g(x)}=\sqrt{\frac{x}{1-x}}$	$[0,1)(x=1$ excluded $)$
g / f	$\frac{g}{f}(x)=\frac{g(x)}{f(x)}=\sqrt{\frac{1-x}{x}}$	$(0,1](x=0$ excluded $)$

Definition Suppose $f: D \rightarrow \mathbb{R}$ and $g: E \rightarrow R$ are functions. Then the composite function $f \circ g$ is defined by

$$
(f \circ g)(x)=f(g(x)) .
$$

(We read $f \circ g$ as " f composed with g ". We also refer to $f \circ g$ as "the composition of f with $g . ")$

The domain of $f \circ g$ consists of the numbers x in the domain of g for which $g(x)$ lies in the domain of f, i.e. $\{x \in \mathbb{R}: x \in E$ and $g(x) \in D\}$.

Examples: (a) Suppose

$$
\begin{array}{lllll}
f(x) & =\sqrt{x} & \text { domain } & D=[0, \infty) & \text { range } \\
g(x)=[0, \infty) \\
g(x) & =x+1 & \text { domain } & E=(-\infty, \infty) & \text { range } \\
S=(-\infty, \infty)
\end{array}
$$

Then

composite	domain
$(f \circ g)(x)=f(g(x))=\sqrt{g(x)}=\sqrt{x+1}$	$[-1, \infty)$
$(g \circ f)(x)=g(f(x))=f(x)+1=\sqrt{x}+1$	$[0, \infty)$
$(f \circ f)(x)=f(f(x))=\sqrt{f(x)}=\sqrt{\sqrt{x}}=x^{1 / 4}$	$[0, \infty)$
$(g \circ g)(x)=g(g(x))=g(x)+1=x+2$	$(-\infty, \infty)$

(b) Suppose

$$
\begin{array}{lllll}
f(x) & =\sqrt{x} & \text { domain } & D=[0, \infty) & \text { range } \\
g=[0, \infty) \\
g(x) & =x^{2} & \text { domain } & E=(-\infty, \infty) & \text { range }
\end{array} S=[0, \infty)
$$

Then

composite	domain
$(f \circ g)(x)=\|x\|$	$(-\infty, \infty)$
$(g \circ f)(x)=x$	$[0, \infty)$

Shifting the graph of a function

Suppose f is a function and $c \in \mathbb{R}$. Let g and h be two new functions defined by $g(x)=$ $f(x)+c$ and $h(x)=f(x+c)$. Then

- the graph of g is equal to the graph of f shifted up by c units.
- the graph of h is equal to the graph of f shifted to the left by c units.

Note that if $c<0$ then a shift up by c units is actually a shift down, and a shift to the left by c units is actually a shift to the right. Note also that g and h can both be obtained from f by taking a composition with a linear function: if $k(x)=x+c$ for all $x \in \mathbb{R}$ then $g=k \circ f$ and $h=f \circ k$.

Example:

Scaling and reflecting the graph of a function

Suppose f is a function and $c \mathbb{R}$. Let g and h be two new functions defined by $g(x)=c f(x)$ and $h(x)=f(c x)$. If $c>0$ then

- the graph of g is equal to the graph of f scaled by a factor of c along the y-axis.
- the graph of h is equal to the graph of f scaled by a factor of c along the x-axis.

Example

If $c=-1$ then

- the graph of g is equal to the graph of f reflected across the x-axis.
- the graph of h is equal to the graph of f reflected across the y-axis.

Example

More generally, when $c<0$, we get a combination of a scaling and a reflection - see Exercise Sheet 2.

[^0]: ${ }^{1}$ Note that $R \subseteq Y$ i.e. the range is contained in (but not necessarily equal to) the codomain.

