MTH4101 Calculus II
Lecture notes for Week 2
Derivatives IV and V
Thomas' Calculus, Sections 14.2 to 14.5

Rainer Klages
School of Mathematical Sciences
Queen Mary, University of London
Spring 2013

Sometimes it is useful to use polar coordinates.
Reminder (or perhaps not?): Polar coordinates
As an alternative to Cartesian coordinates $(x, y)$, we can describe a point $P$ in the plane by using polar coordinates:


These coordinates are particularly useful if a function, or a problem, has some circular symmetry. Typically, we restrict ourselves to $0 \leq r$ and $0 \leq \theta<2 \pi$ (why?). Polar and Cartesian coordinates can be converted into each other:


For the direction polar to Cartesian coordinates we easily derive

$$
x=r \cos \theta, \quad y=r \sin \theta
$$

That is, given $(r, \theta)$, we can compute $(x, y)$. The direction Cartesian to polar coordinates is left to you as an exercise. ${ }^{1}$

[^0]
## Example:

Determine the continuity of the function defined by

$$
f(x, y)= \begin{cases}\frac{2 x y}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

In polar coordinates, i.e., by using $x=r \cos \theta, y=r \sin \theta$, the function can be written as

$$
f(r, \theta)=\frac{2 r^{2} \cos \theta \sin \theta}{r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)}=\sin 2 \theta
$$

provided we are not at the origin (i.e. provided $r \neq 0$ ). Therefore, as $r \rightarrow 0$, the outcome depends on the angle $\theta$. For example, along $\theta=\pi / 4, f=\sin 2 \theta=\sin \pi / 2=1$ everywhere along the line. Therefore the function is not continuous.

## Partial Derivatives

Reminder: Derivative
For functions of one variable, $y=f(x)$, the derivative at a point is the gradient of the tangent to the curve at that point.

But for functions of two variables, $z=f(x, y)$, an infinite number of tangents exist at a point. However, if we fix $y=y_{0}$ in $f(x, y)$ and let $x$ vary, then $f\left(x, y_{0}\right)$ depends only on $x$ :


Horizontal axis in the plane $y=y_{0}$

That is, we can reduce the problem of the many-variable derivative effectively to the onevariable case by holding all but one of the independent variables constant.

## Definition:

The partial derivative of $f(x, y)$ with respect to $x$ at the point $\left(x_{0}, y_{0}\right)$ is

$$
\left.\frac{\partial f}{\partial x}\right|_{\left(x_{0}, y_{0}\right)}=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h, y_{0}\right)-f\left(x_{0}, y_{0}\right)}{h}=f_{x}\left(x_{0}, y_{0}\right)=\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)
$$

provided the limit exists.
In complete analogy, the partial derivative of $f(x, y)$ with respect to $y$ at the point $\left(x_{0}, y_{0}\right)$ is

$$
\left.\frac{\partial f}{\partial y}\right|_{\left(x_{0}, y_{0}\right)}=\lim _{h \rightarrow 0} \frac{f\left(x_{0}, y_{0}+h\right)-f\left(x_{0}, y_{0}\right)}{h}=f_{y}\left(x_{0}, y_{0}\right)=\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)
$$

provided the limit exists.
For example, if $f(x, y)=x^{2}+y^{2}$ then $f_{x}=2 x, f_{y}=2 y$.
Note how we treat the other variables as constants when we do partial differentiation!
We can extend this to three (or more) dimensions. For example, if $f(x, y, z)=x y^{2} z^{3}$ then $f_{x}=y^{2} z^{3}, f_{y}=2 x y z^{3}, f_{z}=3 x y^{2} z^{2}$.

## Example:

Find $\partial f / \partial x$ and $\partial f / \partial y$ at the point $(4,-5)$ for the function $f(x, y)=x^{2}+3 x y+y-1$.

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=\frac{\partial}{\partial x}\left(x^{2}+3 x y+y-1\right)=2 x+3 y \\
& \frac{\partial f}{\partial y}=\frac{\partial}{\partial y}\left(x^{2}+3 x y+y-1\right)=3 x+1
\end{aligned}
$$

At the point $(4,-5)$ we have

$$
\left.\frac{\partial f}{\partial x}\right|_{(4,-5)}=-7,\left.\quad \frac{\partial f}{\partial y}\right|_{(4,-5)}=13 .
$$

## Example:

Find $\partial z / \partial x$ if the equation $y z-\ln z=x+y$ (implicitly) defines $z=z(x, y)$.

$$
\frac{\partial}{\partial x}(y z-\ln z)=\frac{\partial}{\partial x}(x+y) .
$$

Hence

$$
y \frac{\partial z}{\partial x}-\frac{1}{z} \frac{\partial z}{\partial x}=1+0 .
$$

This gives

$$
\left(y-\frac{1}{z}\right) \frac{\partial z}{\partial x}=1 ; \quad \Rightarrow \quad \frac{\partial z}{\partial x}=\frac{z}{y z-1} .
$$

We can also obtain higher order derivatives.

## Example:

If $f(x, y)=x \cos y+y e^{x}$, find

$$
f_{x x}=\frac{\partial^{2} f}{\partial x^{2}}, \quad f_{y x}=\frac{\partial^{2} f}{\partial x \partial y}, \quad f_{y y}=\frac{\partial^{2} f}{\partial y^{2}} \quad \text { and } \quad f_{x y}=\frac{\partial^{2} f}{\partial y \partial x} .
$$

The first step is to find the first partial derivatives:

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=\cos y+y e^{x} \\
& \frac{\partial f}{\partial y}=-x \sin y+e^{x}
\end{aligned}
$$

Now we take the partial derivatives of the first partial derivatives. This gives:

$$
\begin{aligned}
\frac{\partial^{2} f}{\partial x^{2}} & =y e^{x} \\
\frac{\partial^{2} f}{\partial y \partial x} & =-\sin y+e^{x} \\
\frac{\partial^{2} f}{\partial x \partial y} & =-\sin y+e^{x} \\
\frac{\partial^{2} f}{\partial y^{2}} & =-x \cos y .
\end{aligned}
$$

This illustrates the following Theorem:
Theorem: Mixed Derivative Theorem
If $f(x, y)$ and its partial derivatives $f_{x}, f_{y}, f_{x y}$ and $f_{y x}$ are defined throughout an open region containing a point $(a, b)$ and are all continuous at $(a, b)$ then

$$
f_{x y}(a, b)=f_{y x}(a, b) .
$$

(An example where $f_{x y}(a, b) \neq f_{y x}(a, b)$ is provided by the function discussed on p.9/10 of the lecture notes in week 1.)
The theorem can be extended to higher orders, provided the derivatives are continuous.
Example:
Find $f_{y x y z}$ if $f(x, y, z)=1-2 x y^{2} z+x^{2} y$.

$$
f_{y}=-4 x y z+x^{2}, \quad f_{y x}=-4 y z+2 x, \quad f_{y x y}=-4 z, \quad f_{y x y z}=-4
$$

## Reminder:

For functions of a single variable it holds that if $y=f(x)$ is differentiable at $x=x_{0}$, then the change in the value of $f$ that results from changing $x$ from $x_{0}$ to $x_{0}+\Delta x$ is given by the differential approximation

$$
\Delta y=f^{\prime}\left(x_{0}\right) \Delta x+\epsilon \Delta x
$$

in which $\epsilon \rightarrow 0$ as $\Delta x \rightarrow 0$ (see Thomas' Calculus Section 3.9). For functions of two variables, the analogous property yields the definition of differentiability:

DEFINITION Differentiable Function
A function $z=f(x, y)$ is differentiable at $\left(x_{0}, y_{0}\right)$ if $f_{x}\left(x_{0}, y_{0}\right)$ and $f_{y}\left(x_{0}, y_{0}\right)$ exist and $\Delta z$ satisfies an equation of the form

$$
\Delta z=f_{x}\left(x_{0}, y_{0}\right) \Delta x+f_{y}\left(x_{0}, y_{0}\right) \Delta y+\epsilon_{1} \Delta x+\epsilon_{2} \Delta y
$$

in which each of $\epsilon_{1}, \epsilon_{2} \rightarrow 0$ as both $\Delta x, \Delta y \rightarrow 0$. We call $f$ differentiable if it is differentiable at every point in its domain.

Note in particular that for $z=f(x, y)$, differentiability is more than the existence of the partial derivatives, as becomes also clear from the following statement:
If $f_{x}$ and $f_{y}$ are continuous throughout an open region $R$, then $f$ is differentiable at every point of $R$.
It also holds, in analogy to functions of a single variable:
If a function $f(x, y)$ is differentiable at a point $\left(x_{0}, y_{0}\right)$ then $f$ is continuous at $\left(x_{0}, y_{0}\right)$.
If you are interested in the details underlying the above statements, like the Increment Theorem, please check out Thomas' Calculus p.771/772.

## The Chain Rule

Reminder: Chain Rule for Function of One Variable
If $w=f(x)$ is a differentiable function of $x$ and $x=g(t)$ is a differentiable function of $t$, then

$$
\frac{\mathrm{d} w}{\mathrm{~d} t}=\frac{\mathrm{d} w}{\mathrm{~d} x} \frac{\mathrm{~d} x}{\mathrm{~d} t} .
$$

Similarly:
Theorem: Chain Rule for Functions of Two Variables
If $w=f(x, y)$ is differentiable and if $x=x(t), y=y(t)$ are differentiable functions of $t$, then $w=f(x(t), y(t))$ is a differentiable function of $t$ and

$$
\frac{\mathrm{d} w}{\mathrm{~d} t}=\frac{\partial w}{\partial x} \frac{\mathrm{~d} x}{\mathrm{~d} t}+\frac{\partial w}{\partial y} \frac{\mathrm{~d} y}{\mathrm{~d} t}
$$

This straightforwardly follows from the above definition of differentiability.
We can easily extend this theorem to functions $w=f(x, y, z)$ of three variables:

$$
\frac{\mathrm{d} w}{\mathrm{~d} t}=\frac{\partial w}{\partial x} \frac{\mathrm{~d} x}{\mathrm{~d} t}+\frac{\partial w}{\partial y} \frac{\mathrm{~d} y}{\mathrm{~d} t}+\frac{\partial w}{\partial z} \frac{\mathrm{~d} z}{\mathrm{~d} t}
$$

We can use tree diagrams to illustrate the application of the Chain Rule:
(a)

(b)

(a) To find $\mathrm{d} w / \mathrm{d} t$, start at $w$ and read down each route to $t$, multiplying derivatives along the way; then add the products. (b) For functions of three variables there are three routes from $w$ to $t$ instead of two, but finding $\mathrm{d} w / \mathrm{d} t$ is still the same: read down each route, multiplying derivatives along the way; then add.

## Example:

Use the Chain Rule to find the derivative of $w=x y$ with respect to $t$ along the path $x=\cos t, y=\sin t$.

$$
\frac{\mathrm{d} w}{\mathrm{~d} t}=\frac{\partial w}{\partial x} \frac{\mathrm{~d} x}{\mathrm{~d} t}+\frac{\partial w}{\partial y} \frac{\mathrm{~d} y}{\mathrm{~d} t}=y(-\sin t)+x(\cos t)=-\sin ^{2} t+\cos ^{2} t=\cos 2 t .
$$

Note that we could have done this more directly by noting that

$$
w=x y=\cos t \sin t=\frac{1}{2} \sin 2 t ; \quad \frac{\mathrm{d} w}{\mathrm{~d} t}=\frac{1}{2} \cdot 2 \cos 2 t=\cos 2 t .
$$

If $w=f(x, y)$ where $x=g(r, s)$ and $y=h(r, s)$ then

$$
\frac{\partial w}{\partial r}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial r} \quad \text { and } \quad \frac{\partial w}{\partial s}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial s}
$$

and in analogy for functions $w=f(x, y, z)$. Also, if $w=f(x)$ and $x=g(r, s)$ then

$$
\frac{\partial w}{\partial r}=\frac{\mathrm{d} w}{\mathrm{~d} x} \frac{\partial x}{\partial r} \quad \text { and } \quad \frac{\partial w}{\partial s}=\frac{\mathrm{d} w}{\mathrm{~d} x} \frac{\partial x}{\partial s}
$$

## Example:

For $u=w(x, y, z)$, express $\partial w / \partial r$ and $\partial w / \partial s$ in terms of $r$ and $s$ if

$$
w=x+2 y+z^{2}, \quad x=\frac{r}{s}, \quad y=r^{2}+\ln s, \quad z=2 r .
$$

We have

$$
\begin{aligned}
\frac{\partial w}{\partial r} & =\frac{\partial w}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial r}+\frac{\partial w}{\partial z} \frac{\partial z}{\partial r} \\
& =(1)\left(\frac{1}{s}\right)+(2)(2 r)+(2 z)(2)=\frac{1}{s}+12 r
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{\partial w}{\partial s} & =\frac{\partial w}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial s}+\frac{\partial w}{\partial z} \frac{\partial z}{\partial s} \\
& =(1)\left(\frac{-r}{s^{2}}\right)+(2)\left(\frac{1}{s}\right)+(2 z)(0)=\frac{2}{s}-\frac{r}{s^{2}}
\end{aligned}
$$

Suppose that $w=F(x, y)$ is differentiable and that $F(x, y)=0$ defines $y$ (implicitly) as a differentiable function of $x$. Then

$$
0=\frac{d w}{d x}=F_{x} \frac{d x}{d x}+F_{y} \frac{d y}{d x}=F_{x}+F_{y} \frac{d y}{d x} .
$$

Hence, at any point where $F_{y} \neq 0$,

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{F_{x}}{F_{y}}
$$

This is the Formula for Implicit Differentiation.

## Example:

Find $\mathrm{d} y / \mathrm{d} x$ if $y^{2}-x^{2}-\sin x y=0$.

$$
\begin{aligned}
F(x, y) & =y^{2}-x^{2}-\sin x y \\
\frac{\mathrm{~d} y}{\mathrm{~d} x} & =-\frac{F_{x}}{F_{y}}=-\frac{(-2 x-y \cos x y)}{(2 y-x \cos x y)}=\frac{2 x+y \cos x y}{2 y-x \cos x y} .
\end{aligned}
$$

You may wish to compare this method with the one that you have learned in Calculus 1, i.e., differentiating the whole equation with respect to $x$ and then solving for $d y / d x$.

## Directional Derivatives and Gradient Vectors

We now investigate the derivative of a function $f(x, y)$ at a point in a particular direction:

## DEFINITION Directional Derivative

The derivative of $f$ at $\mathrm{P}_{0}\left(x_{0}, y_{0}\right)$ in the direction of the unit vector $u=u_{1} \mathrm{i}+$ $\boldsymbol{u}_{\mathbf{2}} \mathbf{j}$ is the number

$$
\begin{equation*}
\left(\frac{d f}{d s}\right)_{\mathbf{u}, P_{0}}=\lim _{s \rightarrow 0} \frac{f\left(x_{0}+s u_{1}, y_{0}+s u_{2}\right)-f\left(x_{0}, y_{0}\right)}{s} \tag{1}
\end{equation*}
$$

provided the limit exists.

It is also denoted by $\left(D_{\mathbf{u}} f\right)_{P_{0}}$ as the derivative of $f$ at the point $P_{0}$ in the direction of the unit vector $\mathbf{u}$. The meaning is illustrated in the following figure:


We can develop a more efficient formula for the directional derivative by considering the line

$$
x=x_{0}+s u_{1}, \quad y=y_{0}+s u_{2}
$$

through the point $P_{0}\left(x_{0}, y_{0}\right)$, parametrised with the arc length parameter $s$ increasing in the direction of the unit vector $\mathbf{u}=u_{1} \mathbf{i}+u_{2} \mathbf{j}$. Then

$$
\begin{aligned}
\left(\frac{\mathrm{d} f}{\mathrm{~d} s}\right)_{\mathbf{u}, P_{0}} & =\left(\frac{\partial f}{\partial x}\right)_{P_{0}} \frac{\mathrm{~d} x}{\mathrm{~d} s}+\left(\frac{\partial f}{\partial y}\right)_{P_{0}} \frac{\mathrm{~d} y}{\mathrm{~d} s} \quad \text { (via the Chain Rule) } \\
& =\left(\frac{\partial f}{\partial x}\right)_{P_{0}} u_{1}+\left(\frac{\partial f}{\partial y}\right)_{P_{0}} u_{2} \\
& =\left[\left(\frac{\partial f}{\partial x}\right)_{P_{0}} \mathbf{i}+\left(\frac{\partial f}{\partial y}\right)_{P_{0}} \mathbf{j}\right] \cdot\left[u_{1} \mathbf{i}+u_{2} \mathbf{j}\right]
\end{aligned}
$$


[^0]:    ${ }^{1}$ If you have not encountered polar coordinates before in sufficient detail, I highly recommend that you familiarize yourself with Thomas' Calculus, Section 11.3.

