

MTH4101 Calculus II

Lecture notes for Week 2 Derivatives IV and V

Thomas' Calculus, Sections 14.2 to 14.5

Rainer Klages

School of Mathematical Sciences Queen Mary, University of London

Spring 2013

Sometimes it is useful to use polar coordinates.

Reminder (or perhaps not?): Polar coordinates

As an alternative to **Cartesian coordinates** (x, y), we can describe a point P in the plane by using **polar coordinates**:

These coordinates are particularly useful if a function, or a problem, has some circular symmetry. Typically, we restrict ourselves to $0 \le r$ and $0 \le \theta < 2\pi$ (why?). Polar and Cartesian coordinates can be converted into each other:

For the direction polar to Cartesian coordinates we easily derive

 $x = r\cos\theta$, $y = r\sin\theta$

That is, given (r, θ) , we can compute (x, y). The direction Cartesian to polar coordinates is left to you as an exercise.¹

¹If you have not encountered polar coordinates before in sufficient detail, I highly recommend that you familiarize yourself with Thomas' Calculus, Section 11.3.

Example:

Determine the continuity of the function defined by

$$f(x,y) = \begin{cases} \frac{2xy}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

In polar coordinates, i.e., by using $x = r \cos \theta$, $y = r \sin \theta$, the function can be written as

$$f(r,\theta) = \frac{2r^2\cos\theta\sin\theta}{r^2(\cos^2\theta + \sin^2\theta)} = \sin 2\theta$$

provided we are not at the origin (i.e. provided $r \neq 0$). Therefore, as $r \to 0$, the outcome depends on the angle θ . For example, along $\theta = \pi/4$, $f = \sin 2\theta = \sin \pi/2 = 1$ everywhere along the line. Therefore the function is not continuous.

Partial Derivatives

Reminder: Derivative

For functions of one variable, y = f(x), the *derivative* at a point is the gradient of the tangent to the curve at that point.

But for functions of two variables, z = f(x, y), an infinite number of tangents exist at a point. However, if we fix $y = y_0$ in f(x, y) and let x vary, then $f(x, y_0)$ depends only on x:

That is, we can reduce the problem of the many-variable derivative effectively to the onevariable case by holding all but one of the independent variables constant.

Definition:

The **partial derivative** of f(x, y) with respect to x at the point (x_0, y_0) is

$$\frac{\partial f}{\partial x}\Big|_{(x_0,y_0)} = \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h} = f_x(x_0, y_0) = \frac{\partial f}{\partial x}(x_0, y_0)$$

provided the limit exists.

In complete analogy, the partial derivative of f(x, y) with respect to y at the point (x_0, y_0) is

$$\frac{\partial f}{\partial y}\Big|_{(x_0,y_0)} = \lim_{h \to 0} \frac{f(x_0, y_0 + h) - f(x_0, y_0)}{h} = f_y(x_0, y_0) = \frac{\partial f}{\partial y}(x_0, y_0)$$

provided the limit exists.

For example, if $f(x, y) = x^2 + y^2$ then $f_x = 2x$, $f_y = 2y$.

Note how we treat the other variables as constants when we do partial differentiation!

We can extend this to three (or more) dimensions. For example, if $f(x, y, z) = xy^2 z^3$ then $f_x = y^2 z^3$, $f_y = 2xyz^3$, $f_z = 3xy^2 z^2$.

Example:

Find $\partial f/\partial x$ and $\partial f/\partial y$ at the point (4, -5) for the function $f(x, y) = x^2 + 3xy + y - 1$.

$$\frac{\partial f}{\partial x} = \frac{\partial}{\partial x}(x^2 + 3xy + y - 1) = 2x + 3y$$
$$\frac{\partial f}{\partial y} = \frac{\partial}{\partial y}(x^2 + 3xy + y - 1) = 3x + 1.$$

At the point (4, -5) we have

$$\left. \frac{\partial f}{\partial x} \right|_{(4,-5)} = -7, \qquad \left. \frac{\partial f}{\partial y} \right|_{(4,-5)} = 13.$$

Example:

Find $\partial z/\partial x$ if the equation $yz - \ln z = x + y$ (implicitly) defines z = z(x, y).

$$\frac{\partial}{\partial x}(yz - \ln z) = \frac{\partial}{\partial x}(x + y).$$

Hence

$$y\frac{\partial z}{\partial x} - \frac{1}{z}\frac{\partial z}{\partial x} = 1 + 0.$$

This gives

$$\left(y-\frac{1}{z}\right)\frac{\partial z}{\partial x} = 1; \qquad \Rightarrow \quad \frac{\partial z}{\partial x} = \frac{z}{yz-1}.$$

We can also obtain higher order derivatives.

Example:

If $f(x, y) = x \cos y + y e^x$, find

$$f_{xx} = \frac{\partial^2 f}{\partial x^2}, \quad f_{yx} = \frac{\partial^2 f}{\partial x \partial y}, \quad f_{yy} = \frac{\partial^2 f}{\partial y^2} \text{ and } f_{xy} = \frac{\partial^2 f}{\partial y \partial x}.$$

The first step is to find the first partial derivatives:

$$\frac{\partial f}{\partial x} = \cos y + y e^x$$
$$\frac{\partial f}{\partial y} = -x \sin y + e^x.$$

Now we take the partial derivatives of the first partial derivatives. This gives:

$$\frac{\partial^2 f}{\partial x^2} = y e^x$$
$$\frac{\partial^2 f}{\partial y \partial x} = -\sin y + e^x$$
$$\frac{\partial^2 f}{\partial x \partial y} = -\sin y + e^x$$
$$\frac{\partial^2 f}{\partial y^2} = -x \cos y.$$

This illustrates the following Theorem:

Theorem: Mixed Derivative Theorem

If f(x, y) and its partial derivatives f_x , f_y , f_{xy} and f_{yx} are *defined* throughout an open region containing a point (a, b) and are *all continuous* at (a, b) then

$$f_{xy}(a,b) = f_{yx}(a,b) \,.$$

(An example where $f_{xy}(a,b) \neq f_{yx}(a,b)$ is provided by the function discussed on p.9/10 of the lecture notes in week 1.)

The theorem can be extended to higher orders, provided the derivatives are continuous.

Example:

Find f_{yxyz} if $f(x, y, z) = 1 - 2xy^2z + x^2y$.

$$f_y = -4xyz + x^2$$
, $f_{yx} = -4yz + 2x$, $f_{yxy} = -4z$, $f_{yxyz} = -4z$

Reminder:

For functions of a single variable it holds that if y = f(x) is differentiable at $x = x_0$, then the change in the value of f that results from changing x from x_0 to $x_0 + \Delta x$ is given by the *differential approximation*

$$\Delta y = f'(x_0)\Delta x + \epsilon \Delta x$$

in which $\epsilon \to 0$ as $\Delta x \to 0$ (see Thomas' Calculus Section 3.9). For functions of two variables, the analogous property yields the *definition* of differentiability:

DEFINITION Differentiable Function

A function z = f(x, y) is differentiable at (x_0, y_0) if $f_x(x_0, y_0)$ and $f_y(x_0, y_0)$ exist and Δz satisfies an equation of the form

 $\Delta z = f_x(x_0, y_0)\Delta x + f_y(x_0, y_0)\Delta y + \epsilon_1 \Delta x + \epsilon_2 \Delta y,$

in which each of $\epsilon_1, \epsilon_2 \rightarrow 0$ as both $\Delta x, \Delta y \rightarrow 0$. We call f differentiable if it is differentiable at every point in its domain.

Note in particular that for z = f(x, y), differentiability is more than the existence of the partial derivatives, as becomes also clear from the following statement:

If f_x and f_y are *continuous* throughout an open region R, then f is *differentiable* at every point of R.

It also holds, in analogy to functions of a single variable:

If a function f(x, y) is differentiable at a point (x_0, y_0) then f is continuous at (x_0, y_0) .

If you are interested in the details underlying the above statements, like the *Increment Theorem*, please check out Thomas' Calculus p.771/772.

The Chain Rule

Reminder: Chain Rule for Function of One Variable

If w = f(x) is a differentiable function of x and x = g(t) is a differentiable function of t, then

$$\frac{\mathrm{d}w}{\mathrm{d}t} = \frac{\mathrm{d}w}{\mathrm{d}x}\frac{\mathrm{d}x}{\mathrm{d}t}$$

Similarly:

Theorem: Chain Rule for Functions of Two Variables

If w = f(x, y) is differentiable and if x = x(t), y = y(t) are differentiable functions of t, then w = f(x(t), y(t)) is a differentiable function of t and

$$\frac{\mathrm{d}w}{\mathrm{d}t} = \frac{\partial w}{\partial x}\frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\partial w}{\partial y}\frac{\mathrm{d}y}{\mathrm{d}t}$$

This straightforwardly follows from the above definition of differentiability. We can easily extend this theorem to functions w = f(x, y, z) of three variables:

$$\frac{\mathrm{d}w}{\mathrm{d}t} = \frac{\partial w}{\partial x}\frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\partial w}{\partial y}\frac{\mathrm{d}y}{\mathrm{d}t} + \frac{\partial w}{\partial z}\frac{\mathrm{d}z}{\mathrm{d}t}$$

We can use **tree diagrams** to illustrate the application of the Chain Rule:

(a) To find dw/dt, start at w and read down each route to t, multiplying derivatives along the way; then add the products. (b) For functions of three variables there are three routes from w to t instead of two, but finding dw/dt is still the same: read down each route, multiplying derivatives along the way; then add.

Example:

Use the Chain Rule to find the derivative of w = xy with respect to t along the path $x = \cos t$, $y = \sin t$.

$$\frac{\mathrm{d}w}{\mathrm{d}t} = \frac{\partial w}{\partial x}\frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\partial w}{\partial y}\frac{\mathrm{d}y}{\mathrm{d}t} = y(-\sin t) + x(\cos t) = -\sin^2 t + \cos^2 t = \cos 2t \,.$$

Note that we could have done this more directly by noting that

$$w = xy = \cos t \sin t = \frac{1}{2} \sin 2t; \quad \frac{\mathrm{d}w}{\mathrm{d}t} = \frac{1}{2} \cdot 2 \cos 2t = \cos 2t.$$

If w = f(x, y) where x = g(r, s) and y = h(r, s) then

$$\frac{\partial w}{\partial r} = \frac{\partial w}{\partial x}\frac{\partial x}{\partial r} + \frac{\partial w}{\partial y}\frac{\partial y}{\partial r} \quad \text{and} \quad \frac{\partial w}{\partial s} = \frac{\partial w}{\partial x}\frac{\partial x}{\partial s} + \frac{\partial w}{\partial y}\frac{\partial y}{\partial s}$$

and in analogy for functions w = f(x, y, z). Also, if w = f(x) and x = g(r, s) then

$$\frac{\partial w}{\partial r} = \frac{\mathrm{d}w}{\mathrm{d}x}\frac{\partial x}{\partial r}$$
 and $\frac{\partial w}{\partial s} = \frac{\mathrm{d}w}{\mathrm{d}x}\frac{\partial x}{\partial s}$.

Example:

For u = w(x, y, z), express $\partial w / \partial r$ and $\partial w / \partial s$ in terms of r and s if

$$w = x + 2y + z^2$$
, $x = \frac{r}{s}$, $y = r^2 + \ln s$, $z = 2r$.

We have

$$\frac{\partial w}{\partial r} = \frac{\partial w}{\partial x}\frac{\partial x}{\partial r} + \frac{\partial w}{\partial y}\frac{\partial y}{\partial r} + \frac{\partial w}{\partial z}\frac{\partial z}{\partial r}$$
$$= (1)\left(\frac{1}{s}\right) + (2)(2r) + (2z)(2) = \frac{1}{s} + 12r$$

and

$$\frac{\partial w}{\partial s} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial s} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial s}$$
$$= (1) \left(\frac{-r}{s^2}\right) + (2) \left(\frac{1}{s}\right) + (2z)(0) = \frac{2}{s} - \frac{r}{s^2}$$

Suppose that w = F(x, y) is differentiable and that F(x, y) = 0 defines y (implicitly) as a differentiable function of x. Then

$$0 = \frac{dw}{dx} = F_x \frac{dx}{dx} + F_y \frac{dy}{dx} = F_x + F_y \frac{dy}{dx} \,.$$

Hence, at any point where $F_y \neq 0$,

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{F_x}{F_y} \,.$$

This is the Formula for Implicit Differentiation.

Example:

Find dy/dx if $y^2 - x^2 - \sin xy = 0$.

$$F(x,y) = y^2 - x^2 - \sin xy$$

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{(-2x - y\cos xy)}{(2y - x\cos xy)} = \frac{2x + y\cos xy}{2y - x\cos xy}.$$

You may wish to compare this method with the one that you have learned in Calculus 1, i.e., differentiating the whole equation with respect to x and then solving for dy/dx.

Directional Derivatives and Gradient Vectors

We now investigate the derivative of a function f(x, y) at a point in a particular direction:

DEFINITION Directional Derivative The derivative of f at $P_0(x_0, y_0)$ in the direction of the unit vector $\mathbf{u} = u_1\mathbf{i} + u_2\mathbf{j}$ is the number $\left(\frac{df}{ds}\right)_{\mathbf{u},P_0} = \lim_{s \to 0} \frac{f(x_0 + su_1, y_0 + su_2) - f(x_0, y_0)}{s}, \quad (1)$

provided the limit exists.

We can develop a more efficient formula for the directional derivative by considering the line

$$x = x_0 + su_1, \qquad y = y_0 + su_2$$

through the point $P_0(x_0, y_0)$, parametrised with the arc length parameter s increasing in the direction of the unit vector $\mathbf{u} = u_1 \mathbf{i} + u_2 \mathbf{j}$. Then

$$\begin{pmatrix} \frac{\mathrm{d}f}{\mathrm{d}s} \end{pmatrix}_{\mathbf{u},P_0} = \left(\frac{\partial f}{\partial x} \right)_{P_0} \frac{\mathrm{d}x}{\mathrm{d}s} + \left(\frac{\partial f}{\partial y} \right)_{P_0} \frac{\mathrm{d}y}{\mathrm{d}s} \quad \text{(via the Chain Rule)}$$
$$= \left(\frac{\partial f}{\partial x} \right)_{P_0} u_1 + \left(\frac{\partial f}{\partial y} \right)_{P_0} u_2$$
$$= \left[\left(\frac{\partial f}{\partial x} \right)_{P_0} \mathbf{i} + \left(\frac{\partial f}{\partial y} \right)_{P_0} \mathbf{j} \right] \cdot [u_1 \mathbf{i} + u_2 \mathbf{j}]$$