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What is Calculus?

Calculus is the branch of mathematics which uses limits, derivatives and integrals to ‘mea-
sure change’. It is based on the real numbers and the study of functions of real variables:

• for one variable see Calculus I

• for several variables see Calculus II

Calculus provides powerful techniques for solving problems which have widespread applica-
tions throughout science, economics, and engineering. It has been formalised and extended
into the important branch of mathematics known as analysis.

Real numbers and the real line

We can think of the real numbers as the set of all infinite decimals. We denote this set by
R.1

examples: 2 = 2.000 . . . ; −3

4
= −0.7500 . . . ; 1

3
= 0.333 . . . ;

√
2 = 1.4142 . . . ; π =

3.1415 . . .

The real numbers can be represented as points on the real line:

-3 -2 -1 0 1 2 3 4-3/4 1/3 π2
The real numbers have three types of fundamental properties:

• algebraic: the rules of calculation (addition, subtraction, multiplication, division).
Example: 2(3 + 5) = 2 · 3 + 2 · 5 = 6 + 10 = 16

• order: inequalities relating any two real numbers (for a geometric picture imagine the
order in which points occur on the real line).
Example: −3

4
< 1

3
,

√
2 ≤ π

• completeness: “there are no gaps on the real line”

1. Algebraic properties.
The first five algebraic properties involve addition:
(A0) For all a, b ∈ R we have a + b ∈ R. closure

(A1) For all a, b, c ∈ R we have a+ (b+ c) = (a+ b) + c. associativity

(A2) For all a, b ∈ R we have a + b = b+ a. commutativity

(A3) There is an element 0 ∈ R such that a+ 0 = a for all a ∈ R. identity

(A4) For all a ∈ R there is an element −a ∈ R such that a + (−a) = 0. inverse

Why these rules? They define an algebraic structure called an abelian, (or commutative),
group. Other examples of abelian groups are the integers Z = {0,±1,±2, . . .} and the
rational numbers Q = {m/n : m,n ∈ Z and n 6= 0}.2

1A set is just a ‘collection of objects’. The objects in a set are called elements and we write x ∈ R as

shorthand for ‘x is an element of R’ i.e. x is a real number. You will learn more about sets in MTH4110

Mathematical Structures.
2This set theory notation is shorthand for saying “Q is the set of all numbers m/n such that m,n are

integers and n 6= 0.”
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We have five analogous algebraic properties for multiplication:
(M0) For all a, b ∈ R we have ab ∈ R closure

(M1) For all a, b, c ∈ R we have a(bc) = (ab)c associativity

(M2) For all a, b ∈ R we have ab = ba commutativity

(M3) There is an element 1 ∈ R such that a 1 = a for all a ∈ R. identity

(M4) For all a ∈ R with a 6= 0, there is an element a−1 ∈ R such that a a−1 = 1 inverse.

Note that the rationals Q also satisfy properties M0-M4 but the integers Z do not.

One final algebraic property connects multiplication with addition:

(D) For all a, b, c ∈ R we have a(b+ c) = ab+ ac distributivity

These 11 rules define an algebraic structure called a field. Since the reals R and rationals
Q both satisfy all 11 properties, each of them is an example of a field.

2. Order properties
For all a, b, c ∈ R we have:
(O1) either a ≤ b or b ≤ a totality of ordering I

(O2) if a ≤ b and b ≤ a then a = b totality of ordering II

(O3) if a ≤ b and b ≤ c then a ≤ c transitivity

(O4) if a ≤ b then a+ c ≤ b+ c order under addition

(O5) if a ≤ b and 0 ≤ c then a c ≤ b c order under multiplication

Properties A0-A4, M0-M4, D, and O1-O5 define a mathematical structure called an ordered

field.

Some useful rules for calculations with inequalities (practise in exercises) are:

We can prove that these rules are valid by using using properties (O1) to (O5): 1. to 3. are
straightforward, 4. to 6. are more tricky.



4

3. Completeness property This is more difficult to explain. Intuitively it means “there
are no gaps in the real numbers”. More precisely it says: if a set of real numbers S has
an upper bound i.e. there exists a number c ∈ R such that x ≤ c for all x ∈ S, then S
has a least upper bound i.e. there exists an upper bound c0 for S such that c ≥ c0 for all
upper bounds c of S. This property may seem obvious, but it does not hold for the rational

numbers. Consider for example the set S = {q ∈ Q : q2 ≤ 2}. This set has an upper bound
in Q, for example c = 3/2. But it has no least upper bound in Q. The problem is that the
only possible contender for a least upper bound for S is c0 =

√
2 and

√
2 6∈ Q. We will

”prove” this last statement:

Theorem 1 x2 = 2 has no solution for x ∈ Q.

Proof: We use proof by contradiction. Assume there is an x ∈ Q with x2 = 2. Then x
must be of the form x = m

n
, m, n ∈ Z, n 6= 0. We can assume that m and n have no

common factors (otherwise we can cancel them).
Now x2 = 2 implies that (m

n
)2 = 2, so m2 = 2n2, and hence m2 is even.

However, the fact that m2 even implies that m is even. Writing m = 2m1 we have
2n2 = m2 = (2m1)

2 = 4m2

1
, and hence 2m2

1
= n2.

This implies that n2 is even, so n is even as well.
We have now shown that both m and n must be even, and hence they share a common
factor 2.
This is a contradiction! Therefore the assumption that there is an x ∈ Q with x2 = 2 must
be false. •

We do not have the mathematical tools to discuss completeness any further. It is covered
in MTH5104 Convergence and Continuity, a 2nd year ”analysis” module.

University mathematics is built upon

• basic properties (Definitions, Axioms)

• statements (Lemmas, Propositions, Theorems, Corollaries, . . .) which we deduce from
the basic properties by giving proofs!

You will learn how to write your own proofs in MTH4110 Mathematical Structures. The
calculus modules MTH4100 and MTH4101 will be primarily concerned with using calculus
to solve problems.

Intervals

Definition An interval is a subset I of R of one of the following two types:

(a) all real numbers which lie between two given real numbers;

(b) all real numbers which are either above or below a given real number.

Type (a) intervals are said to be bounded (or finite). Type (b) intervals are said to be
unbounded (or infinite). The completeness property tells us that an interval which is bounded
above has a least upper bound. Similarly an interval which is bounded below has a greatest
lower bound. We refer to these values as end-points of the interval.
Examples:
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• I = {x ∈ R : 3 < x ≤ 6} defines a bounded interval. Geometrically, it corresponds
to a line segment on the real line. It has two end-points 3 and 6. We can describe it
using the notation I = (3, 6], where the round bracket on the left tells us that 3 6∈ I
and the square bracket on the right tells us that 6 ∈ I.

• I = {x ∈ R : x > −2} defines an unbounded interval. Geometrically, it corresponds
to a ray i.e. a line which extends to infinity in one direction. It has one end-point −2.
We can describe it using the notation I = (−2,∞).

We can distinguish between intervals which are bounded or unbounded. We can also dis-
tinguish between intervals by considering whether or not they contain their end points:
intervals which contain all their end-points are closed; intervals which contain none of their
end-points are open; intervals which have two end points and contain exactly one of them
are half-open (or half-closed).

Solving inequalities We can represent the set of all solutions to one or more inequalities
as an interval or, more generally, as a collection of disjoint intervals.

Examples: Find the set of all solutions to the following inequalities.

(a) 2x−1 < x+3. Using the properties of order we have 2x < x+4 and hence x < 4. Thus
the set of solutions is the interval (−∞, 4).

(b) 6

x−1
≥ 5. Since 6

x−1
> 0 we have x− 1 > 0 and hence x > 1. We can now use property

(O5) to deduce that 6 ≥ 5x− 5 and hence 11

5
≥ x. Combining these two inequalities we see

that the set of solutions is the interval (1, 11
5
].

(c) x2 − 2x− 1 > 2. Then x2 − 2x− 3 > 0 so (x+ 1)(x− 3) > 0. Hence either (x+ 1) and
(x − 3) are both positive i.e. x > 3, or (x + 1) and (x − 3) are both negative i.e. x < −1.
Thus the set of solutions is union of the two disjoint intervals (−∞,−1) and (3,∞).
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Absolute value

Definition The absolute value (or modulus) of a real number x is defined as:

|x| =
{

x if x ≥ 0
−x if x < 0.

Geometrically, |x| is the distance on the real line between x and 0.

Example:

Similarly, for any x, y ∈ R, |x− y| is the distance between x and y.

Example:

Lemma 1 (Properties of Absolute value) Suppose a, b ∈ R. Then:

1. |a| =
√
a2;

2. | − a| = |a|;

3. |ab| = |a| |b|;

4. |a
b
| = |a|

|b|
when b 6= 0;

5. |a+ b| ≤ |a|+ |b|, the triangle inequality.

We need to prove these statements.

Proof of (1). By definition, the symbol
√
a2 is always taken to be the non-negative square

root of a2. So
√
a2 = a if a ≥ 0 and

√
a2 = −a if a < 0. Hence |a| =

√
a2.

We will use (1) to prove (2)-(5).

Proof of (2). We have

| − a| =
√

(−a)2 =
√
a2 = |a|.

We have used a direct proof: We started on the left hand side of the equation and transformed
it step by step until we arrived at the right hand side.

Proof of (3) We have

|ab| =
√

(ab)2 =
√
a2b2 =

√
a2
√
b2 = |a| |b|.

Proof of (4): exercise!
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Proof of (5) We use a trick. We first show that |a + b|2 ≤ (|a| + |b|)2. Since |a + b| =
√

(a+ b)2 we have

|a+ b|2 =
(

√

(a+ b)2
)2

= (a+ b)2

= a2 + 2ab+ b2

≤ a2 + 2|a| |b|+ b2 (because ab ≤ |ab| = |a||b| by (2))

= |a|2 + 2|a| |b|+ |b|2

= (|a|+ |b|)2

Taking the square roots of both sides and using the facts that |a+ b| and |a|+ |b| are both
non-negative we may deduce that (5) holds. •
Absolute Values and Intervals We can represent the set of all solutions to inequalities
involving absolute values as unions of one or more disjoint intervals.

Lemma 2 (Absolute values and Intervals) Suppose a is a positive real number. Then:

1. |x| = a ⇔ x = ±a; 3

2. |x| < a ⇔ −a < x < a ⇔ x ∈ (−a, a);

3. |x| > a ⇔ x < −a or x > a ⇔ x ∈ (−∞,−a) ∪ (a,∞);

4. |x| ≤ a ⇔ −a ≤ x ≤ a ⇔ x ∈ [−a, a];

5. |x| ≥ a ⇔ x ≤ −a or x ≥ a ⇔ x ∈ (−∞,−a] ∪ [a,∞).

Proof of (4). This follows because the distance from x to 0 is less than or equal to a if
and only if x lies between a and −a. •
Examples

(a) |2x− 3| ≤ 1 if and only if −1 ≤ 2x− 3 ≤ 1 i.e. x ∈ [1, 2].

(b) |2x− 3| ≥ 1 if and only if 2x− 3 ≤ −1 or 2x− 3 ≥ 1 i.e. x ∈ (−∞, 1] or x ∈ [2,∞).

Reading Assignment: read

Thomas’ Calculus, Appendix 3:
Lines, Circles, and Parabolas

3The symbol ⇔ is shorthand for ‘if and only if’. It is used to link equivalent statements.


