MTH4100 Calculus I

Bill Jackson
School of Mathematical Sciences QMUL

Week 12, Semester 1, 2012

Irrational powers of real numbers

Lemma

Suppose a is a positive real number and $q \in \mathbb{Q}$. Then

$$
a^{q}=\exp (q \ln a) .
$$

Irrational powers of real numbers

Lemma

Suppose a is a positive real number and $q \in \mathbb{Q}$. Then

$$
a^{q}=\exp (q \ln a) .
$$

Definition For any $a \in \mathbb{R}$ with $a>0$, the exponential function with base a, a^{x}, is defined by putting

$$
a^{x}=\exp (x \ln a)
$$

for all $x \in \mathbb{R}$.

Irrational powers of real numbers

Lemma

Suppose a is a positive real number and $q \in \mathbb{Q}$. Then

$$
a^{q}=\exp (q \ln a) .
$$

Definition For any $a \in \mathbb{R}$ with $a>0$, the exponential function with base a, a^{x}, is defined by putting

$$
a^{x}=\exp (x \ln a)
$$

for all $x \in \mathbb{R}$.
This definition implies that

$$
\ln \left(a^{x}\right)=\ln [\exp (x \ln a)]=x \ln a
$$

for all $x \in \mathbb{R}$.

Properties of the exponential function with base a

Lemma
Suppose $a, b, c \in \mathbb{R}$ and $a>0$. Then:
(1) $a^{b} \cdot a^{c}=a^{b+c}$:
(2) $\left(a^{b}\right)^{c}=a^{b c}$.

Properties of the exponential function with base a

Lemma

Suppose $a, b, c \in \mathbb{R}$ and $a>0$. Then:
(1) $a^{b} \cdot a^{c}=a^{b+c}$:
(2) $\left(a^{b}\right)^{c}=a^{b c}$.

Theorem

Suppose that $a>0$ and $a \neq 1$. Then the exponential function with base a is differentiable for all $x \in \mathbb{R}$ and satisfies

$$
\frac{d}{d x} a^{x}=a^{x} \ln a .
$$

Hence

$$
\int a^{x} d x=\frac{a^{x}}{\ln a}+C
$$

Logarithms to the base a

Definition When $a>1, \frac{d}{d x} a^{x}=a^{x} \ln a>0$ and hence $f(x)=a^{x}$ is strictly increasing for all $x \in \mathbb{R}$.

Logarithms to the base a

Definition When $a>1, \frac{d}{d x} a^{x}=a^{x} \ln a>0$ and hence $f(x)=a^{x}$ is strictly increasing for all $x \in \mathbb{R}$.
When $0<a<1$, a similar argument shows that $f(x)=a^{x}$ is strictly decreasing for all $x \in \mathbb{R}$.

Logarithms to the base a

Definition When $a>1, \frac{d}{d x} a^{x}=a^{x} \ln a>0$ and hence $f(x)=a^{x}$ is strictly increasing for all $x \in \mathbb{R}$.
When $0<a<1$, a similar argument shows that $f(x)=a^{x}$ is strictly decreasing for all $x \in \mathbb{R}$.
This implies that $f(x)=a^{x}$ is injective for any fixed $a>0$ with $a \neq 1$. Hence its inverse function exists. This inverse function is called the logarithm of x to the base a and is denoted by $\log _{a} x$.

Logarithms to the base a

Definition When $a>1, \frac{d}{d x} a^{x}=a^{x} \ln a>0$ and hence $f(x)=a^{x}$ is strictly increasing for all $x \in \mathbb{R}$.
When $0<a<1$, a similar argument shows that $f(x)=a^{x}$ is strictly decreasing for all $x \in \mathbb{R}$.
This implies that $f(x)=a^{x}$ is injective for any fixed $a>0$ with $a \neq 1$. Hence its inverse function exists. This inverse function is called the logarithm of x to the base a and is denoted by $\log _{a} x$. We have

$$
\log _{a}\left(a^{x}\right)=x=a^{\log _{a} x}
$$

for all $x \in \mathbb{R}$, by the definition of an inverse function.

Logarithms to the base a

Definition When $a>1, \frac{d}{d x} a^{x}=a^{x} \ln a>0$ and hence $f(x)=a^{x}$ is strictly increasing for all $x \in \mathbb{R}$.
When $0<a<1$, a similar argument shows that $f(x)=a^{x}$ is strictly decreasing for all $x \in \mathbb{R}$.
This implies that $f(x)=a^{x}$ is injective for any fixed $a>0$ with $a \neq 1$. Hence its inverse function exists. This inverse function is called the logarithm of x to the base a and is denoted by $\log _{a} x$. We have

$$
\log _{a}\left(a^{x}\right)=x=a^{\log _{a} x}
$$

for all $x \in \mathbb{R}$, by the definition of an inverse function.
This gives

$$
\ln x=\ln \left(a^{\log _{a} x}\right)=\log _{a} x \cdot \ln a
$$

and hence

$$
\log _{a} x=\frac{\ln x}{\ln a}
$$

Further properties of the exponential function

The definition of a^{x} gives us an alternative notation for $\exp (x)$. Recall that $1=\ln e$ where e is Euler's constant. This implies that

$$
e^{x}=\exp (x \ln e)=\exp x
$$

We often use e^{x} for $\exp x$.

Further properties of the exponential function

The definition of a^{x} gives us an alternative notation for $\exp (x)$. Recall that $1=\ln e$ where e is Euler's constant. This implies that

$$
e^{x}=\exp (x \ln e)=\exp x
$$

We often use e^{x} for $\exp x$.
We have seen that $\frac{d}{d x} e^{x}=e^{x}$. This gives $\int e^{x} d x=e^{x}+C$.

Further properties of the exponential function

The definition of a^{x} gives us an alternative notation for $\exp (x)$. Recall that $1=\ln e$ where e is Euler's constant. This implies that

$$
e^{x}=\exp (x \ln e)=\exp x
$$

We often use e^{x} for $\exp x$.
We have seen that $\frac{d}{d x} e^{x}=e^{x}$. This gives $\int e^{x} d x=e^{x}+C$.
We can now use the chain rule to deduce:

Lemma

Let $f(x)$ be a differentiable function. Then

$$
\frac{d}{d x} e^{f(x)}=e^{f(x)} f^{\prime}(x)
$$

and

$$
\int e^{f(x)} f^{\prime}(x) d x=e^{f(x)}+C
$$

The number e as a limit

Theorem

$$
e=\lim _{x \rightarrow 0}(1+x)^{1 / x}
$$

Techniques of Integration

- Basic formulas, see integration tables (Thomas' Calculus, page 435 and more extensive tables pages T1-T6)
- Procedures for matching integrals to basic formulas
- Other techniques (substitution, integration by parts, partial fractions)

This needs practice, practice, practice,:
Exercise sheet 10 and online exercises sets 9,10

Basic formulas

TABLE 8.1 Basic integration formulas

1. $\int d u=u+C$
2. $\int k d u=k u+C \quad$ (any number k)
3. $\int(d u+d v)=\int d u+\int d v$
4. $\int u^{n} d u=\frac{u^{n+1}}{n+1}+C \quad(n \neq-1)$
5. $\int \frac{d u}{u}=\ln |u|+C$
6. $\int \sin u d u=-\cos u+C$
7. $\int \cos u d u=\sin u+C$
8. $\int \sec ^{2} u d u=\tan u+C$
9. $\int \csc ^{2} u d u=-\cot u+C$
10. $\int \sec u \tan u d u=\sec u+C$
11. $\int \csc u \cot u d u=-\csc u+C$
12. $\int \tan u d u=-\ln |\cos u|+C$
13. $\int \cot u d u=\ln |\sin u|+C$

$$
=-\ln |\csc u|+C
$$

14. $\int e^{u} d u=e^{u}+C$
15. $\int a^{u} d u=\frac{a^{u}}{\ln a}+C \quad(a>0, a \neq 1)$
16. $\int \sinh u d u=\cosh u+C$
17. $\int \cosh u d u=\sinh u+C$
18. $\int \frac{d u}{\sqrt{a^{2}-u^{2}}}=\sin ^{-1}\left(\frac{u}{a}\right)+C$
19. $\int \frac{d u}{a^{2}+u^{2}}=\frac{1}{a} \tan ^{-1}\left(\frac{u}{a}\right)+C$
20. $\int \frac{d u}{u \sqrt{u^{2}-a^{2}}}=\frac{1}{a} \sec ^{-1}\left|\frac{u}{a}\right|+C$
21. $\int \frac{d u}{\sqrt{a^{2}+u^{2}}}=\sinh ^{-1}\left(\frac{u}{a}\right)+C \quad(a>0)$
22. $\int \frac{d u}{\sqrt{u^{2}-a^{2}}}=\cosh ^{-1}\left(\frac{u}{a}\right)+C \quad(u>a>0)$

Procedures for matching integrals to basic formulas

Procedures for Matching Integrals to Basic Formulas

Procedure

Making a simplifying substitution

Completing the square
Using a trigonometric identity

Eliminating a square root

Reducing an improper fraction

Separating a fraction

Multiplying by a form of 1

Example

$$
\begin{gathered}
\frac{2 x-9}{\sqrt{x^{2}-9 x+1}} d x=\frac{d u}{\sqrt{u}} \\
\sqrt{8 x-x^{2}}=\sqrt{16-(x-4)^{2}} \\
(\sec x+\tan x)^{2}=\sec ^{2} x+2 \sec x \tan x+\tan ^{2} x \\
=\sec ^{2} x+2 \sec x \tan x \\
+\left(\sec ^{2} x-1\right) \\
=2 \sec ^{2} x+2 \sec x \tan x-1
\end{gathered}
$$

$$
\sqrt{1+\cos 4 x}=\sqrt{2 \cos ^{2} 2 x}=\sqrt{2}|\cos 2 x|
$$

$$
\frac{3 x^{2}-7 x}{3 x+2}=x-3+\frac{6}{3 x+2}
$$

$$
\frac{3 x+2}{\sqrt{1-x^{2}}}=\frac{3 x}{\sqrt{1-x^{2}}}+\frac{2}{\sqrt{1-x^{2}}}
$$

$$
\sec x=\sec x \cdot \frac{\sec x+\tan x}{\sec x+\tan x}
$$

$$
=\underline{\sec ^{2} x+\sec x \tan x}
$$

Integration by parts

Integration by Parts Formula

$$
\begin{equation*}
\int u d v=u v-\int v d u \tag{2}
\end{equation*}
$$

Integration by parts

Integration by Parts Formula

$$
\begin{equation*}
\int u d v=u v-\int v d u \tag{2}
\end{equation*}
$$

Similarly

Integration by Parts Formula for Definite Integrals

$$
\begin{equation*}
\left.\int_{a}^{b} f(x) g^{\prime}(x) d x=f(x) g(x)\right]_{a}^{b}-\int_{a}^{b} f^{\prime}(x) g(x) d x \tag{3}
\end{equation*}
$$

Integration by parts

Integration by Parts Formula

$$
\begin{equation*}
\int u d v=u v-\int v d u \tag{2}
\end{equation*}
$$

Similarly

Integration by Parts Formula for Definite Integrals

$$
\begin{equation*}
\left.\int_{a}^{b} f(x) g^{\prime}(x) d x=f(x) g(x)\right]_{a}^{b}-\int_{a}^{b} f^{\prime}(x) g(x) d x \tag{3}
\end{equation*}
$$

Example: Evaluate

$$
\int x \cos x d x
$$

Integration by parts - general strategy

- Choose u such that $d u$ is "simpler" than u;
- Choose $d v$ such that $v d u$ is easy to integrate;
- If your result looks more complicated after doing integration by parts, it's most likely not right. Try something else.

Integration by parts - general strategy

- Choose u such that $d u$ is "simpler" than u;
- Choose $d v$ such that $v d u$ is easy to integrate;
- If your result looks more complicated after doing integration by parts, it's most likely not right. Try something else.

Read Thomas' Calculus, Section 8.1, examples 3 to 6 and practice by doing online exercise set 10

The method of partial fractions

Example 1: If we know that

$$
\frac{5 x-3}{x^{2}-2 x-3}=\frac{2}{x+1}+\frac{3}{x-3}
$$

then we can easily integrate

$$
\begin{aligned}
\int \frac{5 x-3}{x^{2}-2 x-3} d x & =\int \frac{2}{x+1} d x+\int \frac{3}{x-3} d x \\
& =2 \ln |x+1|+3 \ln |x-3|+C
\end{aligned}
$$

To obtain such simplifications, we use the method of partial fractions.

Example 2 (repeated linear factor). Find

$$
\int \frac{6 x+7}{(x+2)^{2}} d x
$$

Example 2 (repeated linear factor). Find

$$
\int \frac{6 x+7}{(x+2)^{2}} d x
$$

Read Thomas' Calculus Section 8.4, examples 1, 4, 5 and practice by doing online exercise set 10 .

Improper integrals

Can we compute areas under infinitely extended curves?
Two examples of improper integrals:

Type 1: area extends from $x=1$ to $x=\infty$.
Type 2: area extends from $x=0$ to $x=1$ but $f(x)$ only defined on $(0,1]$.

Improper integrals - Examples

Example of type 1: Find

$$
\int_{0}^{\infty} e^{-x / 2} d x
$$

Improper integrals - Examples

Example of type 1: Find

$$
\int_{0}^{\infty} e^{-x / 2} d x
$$

Example of type 2: Find

$$
\int_{0}^{1} \frac{1}{\sqrt{x}} d x
$$

Improper integrals - Examples

Example of type 1: Find

$$
\int_{0}^{\infty} e^{-x / 2} d x
$$

Example of type 2: Find

$$
\int_{0}^{1} \frac{1}{\sqrt{x}} d x
$$

Read Thomas' Calculus Section 8.7, examples 1 to 5 and practice by doing online exercise set 10 .

