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Irrational powers of real numbers
We have defined what we mean by aq for any real number a > 0 and any rational number q.
We can use the exponential function to extend this to a definition of ax when x is irrational
i.e. x ∈ R \Q. We first express aq in terms of the exponential function.

Lemma 1 Suppose a is a positive real number and q ∈ Q. Then

aq = exp(q ln a) . (1)

Proof The fourth rule for manipulating natural logarithms tells us that

ln aq = q ln a .

Taking the exponential of both sides of this equation (and using exp = ln−1) gives

aq = exp(ln aq) = exp(q ln a) .

•
Since the right hand side of (1) makes sense for all q ∈ R we can use it define ax for all real
numbers x.

Definition For any a ∈ R with a > 0, the exponential function with base a, ax is defined
by putting

ax = exp(x ln a)

for all x ∈ R.

Note that this definition implies that

ln(ax) = ln[exp(x ln a)] = x ln a (2)

and hence that the fourth rule for manipulating natural logarithms holds for all powers of
a, not just rational powers.

For the definition of ax to make sense we will need the exponent in ax to behave in the same
way as exponents for integer or rational powers of a. This follows from our next result.

Lemma 2 Suppose a is a positive real number and b, c ∈ R. Then:

1. ab · ac = ab+c :

2. (ab)c = abc .
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Proof By definition ab = exp(b ln a) and ac = exp(c ln a). Hence

ab · ac = exp[ln(ab · ac)]
= exp[ln(ab) + ln(ac)] (by the first rule for manipulating logs)

= exp[b ln(a) + c ln(a)] (by 2)

= exp[(b+ c) ln(a)]

= ab+c .

Similarly

(ab)c = exp(c ln ab)

= exp(cb ln(a))

= abc .

•
Note: The exponential function with base a is differentiable for all x ∈ R and

d

dx
ax =

d

dx
exp(x ln a) = exp(x ln a) · ln a = ax ln a

by the chain rule. Hence
∫

ax dx =
ax

ln a
+ C

when a > 0 and a 6= 1.

Definition When a > 1, d
dx
ax = ax ln a > 0 and hence f(x) = ax is strictly increasing for

all x ∈ R. When 0 < a < 1, a similar argument shows that f(x) = ax is strictly decreasing
for all x ∈ R. This implies that f(x) = ax is injective for any fixed a > 0 with a 6= 1. Hence
its inverse function exists. This inverse function is called the logarithm of x to the base a
and is denoted by loga x. We have

loga(a
x) = x = aloga x

for all x ∈ R. This gives
ln x = ln

(

aloga x
)

= loga x · ln a .
and hence

loga x =
ln x

ln a

Note: The algebra for loga x is precisely the same as that for lnx.

Further properties of the exponential function

The above definition of ax gives us an alternative notation for exp(x). Recall that 1 = ln e
where e is Euler’s constant. This implies that

ex = exp(x ln e) = exp x.

Henceforth we will often use ex instead of exp x.
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We have seen that d
dx
ex = ex. This gives

∫

exdx = ex + C .

We can now use the chain rule to deduce:

Lemma 3 Let f(x) be a differentiable function. Then

d

dx
ef(x) = ef(x)f ′(x)

and
∫

ef(x)f ′(x)dx = ef(x) + C .

Examples:

1.
d

dx
esinx = esinx d

dx
sin x = esinx cosx

2.
∫ ln 2

0

e3xdx =

∫ ln 8

0

eu
1

3
du

=
1

3
eu
∣

∣

∣

∣

ln 8

0

=
7

3

We defined e via ln e = 1 and stated e = 2.718281828459 . . ..

Theorem 1 (The number e as a limit)

e = lim
x→0

(1 + x)1/x

Proof We have

ln
(

lim
x→0

(1 + x)1/x
)

= lim
x→0

(

ln(1 + x)1/x
)

(continuity of ln x )

= lim
x→0

(

1

x
ln(1 + x)

)

(power rule)

= lim
x→0

1

1 + x
(l’Hôpital)

= 1

Taking exponentials of both sides gives:

lim
x→0

(1 + x)1/x = exp
[

ln
(

lim
x→0

(1 + x)1/x
)]

= exp 1 = e .

•
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Techniques of Integration

• Basic properties (Thomas’ Calculus, Chapter 5)

• Basic formulas, see integration tables (Thomas’ Calculus, page 435 and more extensive
tables on pages T1-T6)

• Procedures for matching integrals to basic formulas

• Other techniques (substitution, integration by parts, partial fractions)

This needs practice, practice, practice, . . .:

Exercise sheet 10 and online exercise sets 9 and 10
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See exercise sheet 10 and online exercise set 9 for further examples

Integration by parts

We have seen that the chain rule for differentiation gives rise to the substitution law for
integration. The technique of integration by parts can be derived from the product rule for
differentiation in a similar way. For any two differentiable functions f and g we have

d

dx
(f(x)g(x)) = f ′(x)g(x) + f(x)g′(x) .

Integrate both sides of this equation gives

∫

d

dx
(f(x)g(x)) dx =

∫

(f ′(x)g(x) + f(x)g′(x)) dx .

Therefore,

f(x)g(x) =

∫

f ′(x)g(x)dx+

∫

f(x)g′(x)dx

leading to
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Putting u = f(x) and v = g(x) this formula can be abbreviated to

Similarly

Example: Evaluate
∫

x cosx dx :

Let u = x and dv = cosx dx . Then du = dx and v = sin x. The integration by parts
formula now gives:

∫

x cosx dx = x sin x−
∫

sin x dx

= x sin x+ cosx+ C (Do not forget the constant C).

Let’s explore the four possible choices of u and dv for
∫

x cos x dx:

1. u = 1, dv = x cosx dx:
We don’t know of how to compute

∫

dv: no good!

2. u = x and dv = cosx dx:
Done above, works!

3. u = cosx, dv = x dx:
Now du = − sin x dx and v = x2/2 so that

∫

x cosx dx =
1

2
x2 cosx+

∫

1

2
x2 sin x dx

This makes the situation worse!
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4. u = x cos x and dv = dx:
Now du = (cosx− x sin x)dx and v = x so that

∫

x cos x dx = x2 cosx−
∫

x(cos x− x sin x)dx

This again is worse!

General advice:

• Choose u such that du is “simpler” than u;

• Choose dv such that vdu is easy to integrate;

• If your result looks more complicated after doing integration by parts, it’s most likely
not right. Try something else.

Read Thomas’ Calculus:
Section 8.1, examples 3 to 6:

Four further examples of integration by parts. . .
. . . and practice by doing online exercise set 10

The method of partial fractions

Example: If we know that

5x− 3

x2 − 2x− 3
=

2

x+ 1
+

3

x− 3

then we can easily integrate
∫

5x− 3

x2 − 2x− 3
dx =

∫

2

x+ 1
dx+

∫

3

x− 3
dx

= 2 ln |x+ 1|+ 3 ln |x− 3|+ C

To obtain such simplifications, we use the method of partial fractions.
Let f(x)/g(x) be a rational function, for example,

f(x)

g(x)
=

2x3 − 4x2 − x− 3

x2 − 2x− 3

If deg(f) ≥ deg(g), we first use polynomial division:

2x3 − 4x2 − x− 3

x2 − 2x− 3
= 2x+

5x− 3

x2 − 2x− 3

and consider the remainder term. We also have to know the factors of g(x):

x2 − 2x− 3 = (x+ 1)(x− 3)
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Now we can write
5x− 3

x2 − 2x− 3
=

A

x+ 1
+

B

x− 3

and obtain

5x− 3 = A(x− 3) +B(x+ 1) = (A+B)x+ (−3A+B).

We can now equate the coefficients of the same powers of x to obtain A + B = 5 and
−3A+B = 3. Solving these two simultaneous equations gives A = 2, and B = 3 as above.1

Example (of a repeated linear factor). Find

∫

6x+ 7

(x+ 2)2
dx .

• Write
6x+ 7

(x+ 2)2
=

A

x+ 2
+

B

(x+ 2)2
.

• Multiply by (x+ 2)2 to get

6x+ 7 = A(x+ 2) +B = Ax+ (2A+B) .

1For this example we could also substitute x = −1 in the equation 5x − 3 = A(x − 3) + B(x + 1) to
obtain A = 2, and substitute x = 3 to obtain B = 3.
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• Equate coefficients of the same powers of x and solve:

A = 6 and 2A +B = 7 ⇒ B = −5 .

• Integrate:

∫

6x+ 7

(x+ 2)2
dx = 6

∫

dx

x+ 2
− 5

∫

dx

(x+ 2)2
= 6 ln |x+ 2|+ 5(x+ 2)−1 + C .

Read Thomas’ Calculus:

Section 8.4, examples 1, 4 and 5:
Three more advanced examples. . .

. . . and practice by doing online exercise set 10.

Improper integrals

Can we compute areas under infinitely extended curves?
Two examples of improper integrals:

Type 1: area extends from x = 1 to x = ∞.
Type 2: area extends from x = 0 to x = 1 but f(x) diverges at x = 0.

Calculation of type I improper integrals in two steps.

Example: y = e−x/2 on [0,∞)
1. Calculate bounded area:
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A(b) =

∫ b

0

e−x/2dx = −2e−x/2
∣

∣

b

0
= −2e−b/2 + 2

2. Take the limit:

lim
b→∞

A(b) = lim
b→∞

(−2e−b/2 + 2) = 2

⇒
∫

∞

0

e−x/2dx = 2

Calculation of type II improper integrals in two steps.

Example: y = 1/
√
x on (0, 1]
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1. Calculate bounded area:

A(a) =

∫ 1

a

dx√
x
= 2

√
x
∣

∣

1

a
= 2− 2

√
a

2. Take the limit:

lim
a→0+

A(a) = lim
a→0+

(2− 2
√
a) = 2

⇒
∫ 1

0

dx√
x
= 2

Read Thomas’ Calculus:
Section 8.7, examples 1 to 5:

Five more examples. . .
. . . and practice by doing online exercise set 10.


