MTH4101 Calculus II

Lecture notes for Week 12

A First Look at Differential Equations

Thomas' Calculus, Sections 7.4, 9.1 and 9.2

Rainer Klages
School of Mathematical Sciences
Queen Mary, University of London
Spring 2013

Example:

Solve the initial value problem

$$
\frac{d y}{d x}=(1+y) e^{x}, y>-1, y(0)=0
$$

By separation of variables and integration we obtain

$$
\begin{aligned}
\int \frac{d y}{1+y} & =\int e^{x} d x \\
\ln (1+y) & =e^{x}+C, C=\text { const. }
\end{aligned}
$$

which gives the solution y in implicit form. The constant C is determined by using the initial condition $y(0)=0$:

$$
\ln (1+0)=0=e^{0}+C=1+C
$$

giving $C=-1$. The explicit solution of the initial value problem is obtained as

$$
y(x)=e^{e^{x}-1}-1
$$

First-order linear differential equations and the integrating factor

A first-order linear differential equation is one that can be written in the standard form

$$
\begin{equation*}
\frac{d y}{d x}+P(x) y=Q(x), \tag{1}
\end{equation*}
$$

where $P=P(x)$ and $Q=Q(x)$ are continuous functions of x. It is linear (in y), because y and its derivative $d y / d x$ occur only to the first power, they are not multiplied together, nor do they appear as the argument of a function (such as $\sin y, \exp (y)$, etc.).

Example:

Put the equation

$$
x \frac{d y}{d x}=x^{2}+3 y, x>0
$$

in standard form.

$$
\begin{aligned}
\frac{d y}{d x} & =x+\frac{3}{x} y \\
\frac{d y}{d x}-\frac{3}{x} y & =x
\end{aligned}
$$

Hence, $P(x)=-3 / x$ and $Q(x)=x$.
An equation in standard form can be solved as follows: Multiply it by a function $v=v(x)$,

$$
v \frac{d y}{d x}+v P y=v Q
$$

Now let's play a little trick: If we choose v such that it transforms the left-hand side into the derivative of the product vy, that is,

$$
v \frac{d y}{d x}+v P y=\frac{d}{d x}(v y)
$$

we can write

$$
\frac{d}{d x}(v y)=v Q
$$

and easily solve by integration:

$$
\begin{align*}
v y & =\int v Q d x \\
y & =\frac{1}{v} \int v Q d x \tag{2}
\end{align*}
$$

We call $v(x)$ an integrating factor, because it makes the linear differential equation integrable.
Now, did we mysteriously get rid of $P(x)$ by solving our differential equation? Not quite, because we still have to determine $v(x)$ by solving the previously imposed equation

$$
\frac{d}{d x}(v y)=v \frac{d y}{d x}+v P y
$$

Apply the product rule and simplify:

$$
\begin{aligned}
\frac{d v}{d x} y+v \frac{d y}{d x} & =v \frac{d y}{d x}+P v y \\
\frac{d v}{d x} y & =P v y
\end{aligned}
$$

But this equation will hold if

$$
\frac{d v}{d x}=P v
$$

which is separable, $P=P(x)$:

$$
\int \frac{d v}{v}=\int P d x
$$

Without loss of generality we may assume that $v>0$,

$$
\begin{align*}
\ln v & =\int P d x \\
v & =e^{\int P d x} \tag{3}
\end{align*}
$$

The general solution to Eq.(1) is thus given by Eq.(2) together with Eq.(3). Note that any antiderivative of P works for Eq.(3).

Example:

Solve

$$
x \frac{d y}{d x}=x^{2}+3 y, x>0 .
$$

The integrating factor method consists of three steps:

1. Put the equation in standard form:

$$
\frac{d y}{d x}-\frac{3}{x} y=x
$$

hence $P(x)=-3 / x$.
2. Calculate the integrating factor:

$$
v=e^{\int P(x) d x}=e^{\int(-3 / x) d x}
$$

by choosing the simplest constant of integration, $C=0$, and noting that $x>0$:

$$
v=e^{-3 \ln x}=e^{\ln x^{-3}}=x^{-3}
$$

3. Multiply and integrate: Multiply both sides of the standard form by $v(x)$,

$$
\frac{1}{x^{3}}\left(\frac{d y}{d x}-\frac{3}{x} y\right)=\frac{1}{x^{3}} x=\frac{1}{x^{2}}
$$

and remember that the left hand side always integrates into the product $v y$, as we have designed it to be:

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{1}{x^{3}} y\right) & =\frac{1}{x^{2}} \\
\frac{1}{x^{3}} y & =\int \frac{1}{x^{2}} d x \\
\frac{1}{x^{3}} y & =-\frac{1}{x}+C .
\end{aligned}
$$

Solving this equation for y gives the general solution

$$
y(x)=-x^{2}+C x^{3}, x>0 .
$$

THE END

