MTH4100 Calculus I

### Bill Jackson School of Mathematical Sciences QMUL

Week 11, Semester 1, 2012

Image: A mathematical states and a mathem

**Example:** Find the total area between the graph of  $f(x) = x^3 - x^2 - 2x$  and the *x*-axis over the interval [-1, 2].

・ロン ・回 と ・ ヨ と ・ ヨ と

크

**Example:** Find the total area between the graph of  $f(x) = x^3 - x^2 - 2x$  and the *x*-axis over the interval [-1, 2].

In general, to find the *total area* between the graph of y = f(x) and the x-axis over the interval [a, b], do the following:

- Draw a graph of f.
- 2 Subdivide [a, b] at the zeros of f.
- Integrate over each subinterval.
- Add the absolute values of these integrals.

## Symmetric functions

### Theorem

Let f be a continuous function on the interval [-a, a].

(a) If f is even, then 
$$\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$$
.

(b) If f is odd, then 
$$\int_{-a}^{a} f(x) dx = 0$$
.

(c) If f is either even or odd, then the total area between the graph of y = f(x) and the x-axis over the interval [-a, a] is twice the total area between the graph of y = f(x) and the x-axis over the interval [0, a].



### Areas between curves

We want to find the area between two curves y = f(x) and y = g(x) for  $x \in [a, b]$ , where  $f(x) \ge g(x)$  for all  $x \in [a, b]$ .



イロン イ部ン イヨン イヨン 三日

### Areas between curves

We want to find the area between two curves y = f(x) and y = g(x) for  $x \in [a, b]$ , where  $f(x) \ge g(x)$  for all  $x \in [a, b]$ .



We can estimate this area A as a limit of Riemann sums of vertical rectangles of height f(x) - g(x) and width  $\Delta x$ . This gives:

$$A = \int_a^b f(x) - g(x) \, dx$$

伺 ト イヨト イヨト

### Areas between curves

We want to find the area between two curves y = f(x) and y = g(x) for  $x \in [a, b]$ , where  $f(x) \ge g(x)$  for all  $x \in [a, b]$ .



We can estimate this area A as a limit of Riemann sums of vertical rectangles of height f(x) - g(x) and width  $\Delta x$ . This gives:

$$A = \int_a^b f(x) - g(x) \, dx$$

**Example:** Find the area of the region *R* that is enclosed by the curves  $y = \sqrt{x}$ , y = 0, and y = x - 2.

**Definition** Let  $f : D \to \mathbb{R}$  be a function. Then f is *injective* (or *one-to-one*) if  $f(x_1) \neq f(x_2)$  whenever  $x_1 \neq x_2$ .

( ) < </p>

**Definition** Let  $f : D \to \mathbb{R}$  be a function. Then f is *injective* (or *one-to-one*) if  $f(x_1) \neq f(x_2)$  whenever  $x_1 \neq x_2$ .

Thus a function is injective if it takes on every value in its range exactly once.

A (1) > A (2) > A (2) >

**Definition** Let  $f : D \to \mathbb{R}$  be a function. Then f is *injective* (or *one-to-one*) if  $f(x_1) \neq f(x_2)$  whenever  $x_1 \neq x_2$ .

Thus a function is injective if it takes on every value in its range exactly once.

**Examples:** Let  $f : \mathbb{R} \to \mathbb{R}$  be defined by  $f(x) = x^3$  and  $g : \mathbb{R}^+ \to \mathbb{R}$  be defined by  $g(x) = \sqrt{x}$ , where  $\mathbb{R}^+ = \{x \in \mathbb{R} : x \ge 0\}.$ 

イロン イ部ン イヨン イヨン 三日

**Definition** Let  $f : D \to \mathbb{R}$  be a function. Then f is *injective* (or *one-to-one*) if  $f(x_1) \neq f(x_2)$  whenever  $x_1 \neq x_2$ .

Thus a function is injective if it takes on every value in its range exactly once.

**Examples:** Let  $f : \mathbb{R} \to \mathbb{R}$  be defined by  $f(x) = x^3$  and  $g : \mathbb{R}^+ \to \mathbb{R}$  be defined by  $g(x) = \sqrt{x}$ , where  $\mathbb{R}^+ = \{x \in \mathbb{R} : x \ge 0\}.$ 

The horizontal line test for injective functions: A function is injective if and only if its graph intersects every horizontal line at most once.

(ロ) (部) (注) (注) [

**Definition** Let  $f : D \to \mathbb{R}$  be a function. Then f is *injective* (or *one-to-one*) if  $f(x_1) \neq f(x_2)$  whenever  $x_1 \neq x_2$ .

Thus a function is injective if it takes on every value in its range exactly once.

**Examples:** Let  $f : \mathbb{R} \to \mathbb{R}$  be defined by  $f(x) = x^3$  and  $g : \mathbb{R}^+ \to \mathbb{R}$  be defined by  $g(x) = \sqrt{x}$ , where  $\mathbb{R}^+ = \{x \in \mathbb{R} : x \ge 0\}.$ 

The horizontal line test for injective functions: A function is injective if and only if its graph intersects every horizontal line at most once.

**Examples:** Let  $f : \mathbb{R} \to \mathbb{R}$  be defined by  $f(x) = x^2$  and  $g : [0, \pi] \to \mathbb{R}$  be defined by  $g(x) = \sin x$ .

(ロ) (同) (E) (E) (E)

**Definition** Let  $f : D \to \mathbb{R}$  be a function. Then f is *injective* (or *one-to-one*) if  $f(x_1) \neq f(x_2)$  whenever  $x_1 \neq x_2$ .

Thus a function is injective if it takes on every value in its range exactly once.

**Examples:** Let  $f : \mathbb{R} \to \mathbb{R}$  be defined by  $f(x) = x^3$  and  $g : \mathbb{R}^+ \to \mathbb{R}$  be defined by  $g(x) = \sqrt{x}$ , where  $\mathbb{R}^+ = \{x \in \mathbb{R} : x \ge 0\}.$ 

The horizontal line test for injective functions: A function is injective if and only if its graph intersects every horizontal line at most once.

**Examples:** Let  $f : \mathbb{R} \to \mathbb{R}$  be defined by  $f(x) = x^2$  and  $g : [0, \pi] \to \mathbb{R}$  be defined by  $g(x) = \sin x$ .

Note that if we restrict the domain of f to  $\mathbb{R}^+ = \{x \in \mathbb{R} : x \ge 0\}$ and the domain of g to  $[0, \pi/2]$  then the restricted functions will both be injective.

$$f^{-1}(y) = x$$
 whenever  $f(x) = y$ .

$$f^{-1}(y) = x$$
 whenever  $f(x) = y$ .

Note that:

• the domain of  $f^{-1}$  is equal to the range of f and the range of  $f^{-1}$  is equal to the domain of f.

$$f^{-1}(y) = x$$
 whenever  $f(x) = y$ .

- the domain of f<sup>-1</sup> is equal to the range of f and the range of f<sup>-1</sup> is equal to the domain of f.
- $f^{-1}$  is read as f inverse.

$$f^{-1}(y) = x$$
 whenever  $f(x) = y$ .

- the domain of f<sup>-1</sup> is equal to the range of f and the range of f<sup>-1</sup> is equal to the domain of f.
- f<sup>-1</sup> is read as f inverse.
- $f^{-1}(x) \neq 1/f(x)$  i.e.  $f^{-1}(x)$  is not the same as  $f(x)^{-1}$ .

$$f^{-1}(y) = x$$
 whenever  $f(x) = y$ .

- the domain of  $f^{-1}$  is equal to the range of f and the range of  $f^{-1}$  is equal to the domain of f.
- f<sup>-1</sup> is read as f inverse.
- $f^{-1}(x) \neq 1/f(x)$  i.e.  $f^{-1}(x)$  is not the same as  $f(x)^{-1}$ .
- $(f^{-1} \circ f)(x) = x$  for all  $x \in D$ .

$$f^{-1}(y) = x$$
 whenever  $f(x) = y$ .

- the domain of  $f^{-1}$  is equal to the range of f and the range of  $f^{-1}$  is equal to the domain of f.
- $f^{-1}$  is read as f inverse.
- $f^{-1}(x) \neq 1/f(x)$  i.e.  $f^{-1}(x)$  is not the same as  $f(x)^{-1}$ .
- $(f^{-1} \circ f)(x) = x$  for all  $x \in D$ .
- $(f \circ f^{-1})(y) = y$  for all  $y \in R$ .

## Method for finding inverse functions

**Example:** Find the inverse of the function  $f : \mathbb{R}^+ \to \mathbb{R}$  defined by  $f(x) = x^2$ .

## Method for finding inverse functions

**Example:** Find the inverse of the function  $f : \mathbb{R}^+ \to \mathbb{R}$  defined by  $f(x) = x^2$ .

Step 1 Solve y = f(x) for x. We have  $y = x^2$  and  $x \ge 0$  so  $x = \sqrt{y}$ . Since the domain and range of f is  $\mathbb{R}^+$ , we obtain

$$f^{-1}: \mathbb{R}^+ o \mathbb{R}^+$$
 by  $x = f^{-1}(y) = \sqrt{y}$ 

## Method for finding inverse functions

**Example:** Find the inverse of the function  $f : \mathbb{R}^+ \to \mathbb{R}$  defined by  $f(x) = x^2$ .

Step 1 Solve y = f(x) for x. We have  $y = x^2$  and  $x \ge 0$  so  $x = \sqrt{y}$ . Since the domain and range of f is  $\mathbb{R}^+$ , we obtain

$$f^{-1}: \mathbb{R}^+ o \mathbb{R}^+$$
 by  $x = f^{-1}(y) = \sqrt{y}$ 

Step 2 Relabel x and y so that y is the dependent variable and x is the independent variable. This gives:

$$f^{-1}: \mathbb{R}^+ o \mathbb{R}^+$$
 by  $y = f^{-1}(x) = \sqrt{x}$ 

## Relationship between graphs of f and $f^{-1}$

### Lemma

The graphs of f and  $f^{-1}$  are interchanged by reflection in the line y = x.

- ∢ ⊒ ⊳

## Relationship between graphs of f and $f^{-1}$

### Lemma

The graphs of f and  $f^{-1}$  are interchanged by reflection in the line y = x.

**Example** The graphs of  $f(x) = x^2$  and  $f^{-1}(x) = \sqrt{x}$ .



### Theorem

Suppose that  $f : D \to \mathbb{R}$  is injective, differentiable and  $f'(x) \neq 0$  for all  $x \in D$ . Then  $f^{-1}$  is differentiable and its derivative  $(f^{-1})'$  satisfies

$$(f^{-1})'(x) = rac{1}{f'(f^{-1}(x))}$$

Equivalently, for all b in the domain of  $f^{-1}$  we have

$$\left. \frac{df^{-1}}{dx} \right|_{x=b} = \frac{1}{\left. \frac{df}{dx} \right|_{x=f^{-1}(b)}}$$

### Theorem

Suppose that  $f : D \to \mathbb{R}$  is injective, differentiable and  $f'(x) \neq 0$  for all  $x \in D$ . Then  $f^{-1}$  is differentiable and its derivative  $(f^{-1})'$  satisfies

$$(f^{-1})'(x) = rac{1}{f'(f^{-1}(x))}$$

Equivalently, for all b in the domain of  $f^{-1}$  we have

$$\left. \frac{df^{-1}}{dx} \right|_{x=b} = \frac{1}{\left. \frac{df}{dx} \right|_{x=f^{-1}(b)}}$$

.

伺 ト イヨ ト イヨト

**Example**  $f : \mathbb{R}^+ \to \mathbb{R}$  by  $f(x) = x^2$ .

**Definition** Consider the function  $f(x) = x^{-1}$ . This is continuous on the closed interval [a, b] for any 0 < a < b.

**Definition** Consider the function  $f(x) = x^{-1}$ . This is continuous on the closed interval [a, b] for any 0 < a < b. The Fundamental Theorem of Calculus (Part 1) now tells us that  $F(x) = \int_1^x t^{-1} dt$  is continuous on [a, b] and differentiable on (a, b)for all 0 < a < b. **Definition** Consider the function  $f(x) = x^{-1}$ . This is continuous on the closed interval [a, b] for any 0 < a < b. The Fundamental Theorem of Calculus (Part 1) now tells us that  $F(x) = \int_1^x t^{-1} dt$  is continuous on [a, b] and differentiable on (a, b)for all 0 < a < b.

This function F is an important function: it is called the *natural logarithm function* and is denoted by In. Thus

$$\ln x = \int_1^x t^{-1} dt \; .$$

> < (20) < (20) < (20)</p>

### Properties of the natural logarithm function



#### Lemma

The domain of  $\ln x$  is  $(0,\infty)$  and its derivative is  $x^{-1}$ .

Bill Jackson

## Rules for manipulating natural logarithms

### Lemma

Suppose a, x are positive real numbers. Then

$$\mathbf{0} \ \ln ax = \ln a + \ln x.$$

$$In \frac{1}{x} = -\ln x.$$

$$In \frac{a}{x} = \ln a - \ln x.$$

크

### Lemma

Suppose a, x are positive real numbers. Then

$$In ax = In a + In x.$$

$$\ln \frac{1}{x} = -\ln x.$$

$$In \frac{a}{x} = \ln a - \ln x.$$

•  $\ln x^q = q \ln x$  for any rational number q.

### **Examples:**

1 
$$\ln 8 + \ln \cos x =$$
  
1  $\ln \frac{z^2 + 3}{2z - 1} =$   
1  $\ln \cot x =$   
1  $\ln \frac{\sqrt[5]{x - 3}}{2z - 3} =$ 

< ロ > < 同 > < 三 > < 三 >

## Range of the natural logarithm function

### Lemma

The range of  $\ln x$  is  $(-\infty, \infty)$ .



・ロン ・回 と ・ ヨン ・ ヨン

크

#### Lemma

The range of  $\ln x$  is  $(-\infty, \infty)$ .

**Definition** The fact that the range of  $\ln x$  is  $(-\infty, \infty)$  implies in particular that  $\ln x = 1$  for some  $x \in (0, \infty)$ . The point *e* for which  $\ln e = 1$  is referred to as *Euler's constant* or *the base of the natural logarithm*. Its approximate numerical value is

 $e = 2.718281828459\ldots$ 

## Antiderivatives involving the natural logarithm

We have seen that  $\ln x$  is an antiderivative for 1/x for any interval  $l \subset (0, \infty)$ . Our next result extends this to all intervals which do not contain zero.

## Antiderivatives involving the natural logarithm

We have seen that  $\ln x$  is an antiderivative for 1/x for any interval  $I \subset (0, \infty)$ . Our next result extends this to all intervals which do not contain zero.

### Theorem

Let I be an interval. If  $0 \notin I$  then  $\ln |x|$  is an antiderivative for f(x) = 1/x on I. More generally, if g(x) is non-zero and differentiable on I, then  $\ln |g(x)|$  is an antiderivative for g'(x)/g(x) on I.

We have seen that  $\ln x$  is an antiderivative for 1/x for any interval  $I \subset (0, \infty)$ . Our next result extends this to all intervals which do not contain zero.

### Theorem

Let I be an interval. If  $0 \notin I$  then  $\ln |x|$  is an antiderivative for f(x) = 1/x on I. More generally, if g(x) is non-zero and differentiable on I, then  $\ln |g(x)|$  is an antiderivative for g'(x)/g(x) on I.

**Example** For  $x \in (-\pi/2, \pi/2)$  we have

$$\int \tan x dx = \ln |\sec x| + C$$

## The Exponential Function

**Definition** The natural logarithm function is injective and hence is invertible. Its inverse function  $\exp(x) = \ln^{-1}(x)$  is called the *exponential function*.



## Properties of the exponential function

#### Lemma

The domain of  $\exp x$  is  $\mathbb{R}$  and its range is  $(0,\infty)$ . The derivative of  $\exp x$  is  $\exp x$ .



< ∃⇒

Recall that  $1 = \ln e$  where e is Euler's constant.

イロン イロン イヨン イヨン 三日

 $\ln e^q = q \ln e = q$ 

for any  $q \in \mathbb{Q}$ .

< ロ > < 同 > < 三 > < 三 >

$$\ln e^q = q \ln e = q$$

for any  $q \in \mathbb{Q}$ . Applying the function exp to both sides gives

$$e^q = \exp(\ln e^q) = \exp q$$

for all  $q \in \mathbb{Q}$ .

$$\ln e^q = q \ln e = q$$

for any  $q \in \mathbb{Q}$ . Applying the function exp to both sides gives

$$e^q = \exp(\ln e^q) = \exp q$$

for all  $q \in \mathbb{Q}$ . Since the right hand side of this equation,  $\exp q$ , is defined for all  $q \in \mathbb{R}$ , we can use it to define what  $e^x$  means when  $x \in \mathbb{R} \setminus \mathbb{Q}$ .

$$\ln e^q = q \ln e = q$$

for any  $q \in \mathbb{Q}$ . Applying the function exp to both sides gives

$$e^q = \exp(\ln e^q) = \exp q$$

for all  $q \in \mathbb{Q}$ . Since the right hand side of this equation,  $\exp q$ , is defined for all  $q \in \mathbb{R}$ , we can use it to define what  $e^x$  means when  $x \in \mathbb{R} \setminus \mathbb{Q}$ .

**Definition** For every  $x \in \mathbb{R}$ , put  $e^x = \exp x$ .

The definition of  $e^x$  makes sense only because  $e^x = \exp x$  satisfies the usual rules for powers:

### Lemma

Suppose  $a, b \in \mathbb{R}$ . Then  $e^{a} \cdot e^{b} = e^{a+b}$   $e^{-a} = 1/e^{a}$   $e^{a}/e^{b} = e^{a-b}$  $(e^{a})^{b} = e^{ab}$ 

(D) (A) (A) (A) (A)

# Read Thomas' Calculus: Section 7.7 Inverse trigonometric functions, and Section 7.8, Hyperbolic functions You will need this information for coursework 10!