MTH4100 Calculus I

Bill Jackson
School of Mathematical Sciences QMUL

Week 11, Semester 1, 2012

Example: Find the total area between the graph of $f(x)=x^{3}-x^{2}-2 x$ and the x-axis over the interval $[-1,2]$.

Example: Find the total area between the graph of $f(x)=x^{3}-x^{2}-2 x$ and the x-axis over the interval $[-1,2]$.
In general, to find the total area between the graph of $y=f(x)$ and the x-axis over the interval $[a, b]$, do the following:
(1) Draw a graph of f.
(2) Subdivide $[a, b]$ at the zeros of f.
(3) Integrate over each subinterval.
(9) Add the absolute values of these integrals.

Symmetric functions

Theorem

Let f be a continuous function on the interval $[-a, a]$.
(a) If f is even, then $\int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x$.
(b) If f is odd, then $\int_{-a}^{a} f(x) d x=0$.
(c) If f is either even or odd, then the total area between the graph of $y=f(x)$ and the x-axis over the interval $[-a, a]$ is twice the total area between the graph of $y=f(x)$ and the x-axis over the interval $[0, a]$.

(a)

(b)

Areas between curves

We want to find the area between two curves $y=f(x)$ and $y=g(x)$ for $x \in[a, b]$, where $f(x) \geq g(x)$ for all $x \in[a, b]$.

Areas between curves

We want to find the area between two curves $y=f(x)$ and $y=g(x)$ for $x \in[a, b]$, where $f(x) \geq g(x)$ for all $x \in[a, b]$.

We can estimate this area A as a limit of Riemann sums of vertical rectangles of height $f(x)-g(x)$ and width Δx. This gives:

$$
A=\int_{a}^{b} f(x)-g(x) d x
$$

Areas between curves

We want to find the area between two curves $y=f(x)$ and $y=g(x)$ for $x \in[a, b]$, where $f(x) \geq g(x)$ for all $x \in[a, b]$.

We can estimate this area A as a limit of Riemann sums of vertical rectangles of height $f(x)-g(x)$ and width Δx. This gives:

$$
A=\int_{a}^{b} f(x)-g(x) d x
$$

Example: Find the area of the region R that is enclosed by the curves $y=\sqrt{x}, y=0$, and $y=x-2$.

Injective (one-to-one) functions

Definition Let $f: D \rightarrow \mathbb{R}$ be a function. Then f is injective (or one-to-one) if $f\left(x_{1}\right) \neq f\left(x_{2}\right)$ whenever $x_{1} \neq x_{2}$.

Injective (one-to-one) functions

Definition Let $f: D \rightarrow \mathbb{R}$ be a function. Then f is injective (or one-to-one) if $f\left(x_{1}\right) \neq f\left(x_{2}\right)$ whenever $x_{1} \neq x_{2}$.

Thus a function is injective if it takes on every value in its range exactly once.

Injective (one-to-one) functions

Definition Let $f: D \rightarrow \mathbb{R}$ be a function. Then f is injective (or one-to-one) if $f\left(x_{1}\right) \neq f\left(x_{2}\right)$ whenever $x_{1} \neq x_{2}$.

Thus a function is injective if it takes on every value in its range exactly once.

Examples: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=x^{3}$ and $g: \mathbb{R}^{+} \rightarrow \mathbb{R}$ be defined by $g(x)=\sqrt{x}$, where $\mathbb{R}^{+}=\{x \in \mathbb{R}: x \geq 0\}$.

Injective (one-to-one) functions

Definition Let $f: D \rightarrow \mathbb{R}$ be a function. Then f is injective (or one-to-one) if $f\left(x_{1}\right) \neq f\left(x_{2}\right)$ whenever $x_{1} \neq x_{2}$.

Thus a function is injective if it takes on every value in its range exactly once.
Examples: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=x^{3}$ and $g: \mathbb{R}^{+} \rightarrow \mathbb{R}$ be defined by $g(x)=\sqrt{x}$, where $\mathbb{R}^{+}=\{x \in \mathbb{R}: x \geq 0\}$.

The horizontal line test for injective functions: A function is injective if and only if its graph intersects every horizontal line at most once.

Injective (one-to-one) functions

Definition Let $f: D \rightarrow \mathbb{R}$ be a function. Then f is injective (or one-to-one) if $f\left(x_{1}\right) \neq f\left(x_{2}\right)$ whenever $x_{1} \neq x_{2}$.

Thus a function is injective if it takes on every value in its range exactly once.

Examples: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=x^{3}$ and $g: \mathbb{R}^{+} \rightarrow \mathbb{R}$ be defined by $g(x)=\sqrt{x}$, where $\mathbb{R}^{+}=\{x \in \mathbb{R}: x \geq 0\}$.

The horizontal line test for injective functions: A function is injective if and only if its graph intersects every horizontal line at most once.

Examples: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=x^{2}$ and $g:[0, \pi] \rightarrow \mathbb{R}$ be defined by $g(x)=\sin x$.

Injective (one-to-one) functions

Definition Let $f: D \rightarrow \mathbb{R}$ be a function. Then f is injective (or one-to-one) if $f\left(x_{1}\right) \neq f\left(x_{2}\right)$ whenever $x_{1} \neq x_{2}$.

Thus a function is injective if it takes on every value in its range exactly once.

Examples: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=x^{3}$ and $g: \mathbb{R}^{+} \rightarrow \mathbb{R}$ be defined by $g(x)=\sqrt{x}$, where $\mathbb{R}^{+}=\{x \in \mathbb{R}: x \geq 0\}$.

The horizontal line test for injective functions: A function is injective if and only if its graph intersects every horizontal line at most once.

Examples: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=x^{2}$ and $g:[0, \pi] \rightarrow \mathbb{R}$ be defined by $g(x)=\sin x$.
Note that if we restrict the domain of f to $\mathbb{R}^{+}=\{x \in \mathbb{R}: x \geq 0\}$ and the domain of g to $[0, \pi / 2]$ then the restricted functions will both be injective.

Inverse functions

Definition Suppose that $f: D \rightarrow \mathbb{R}$ is an injective function with range R. Then the inverse function $f^{-1}: R \rightarrow D$ is defined by

$$
f^{-1}(y)=x \text { whenever } f(x)=y
$$

Note that:

Definition Suppose that $f: D \rightarrow \mathbb{R}$ is an injective function with range R. Then the inverse function $f^{-1}: R \rightarrow D$ is defined by

$$
f^{-1}(y)=x \text { whenever } f(x)=y
$$

Note that:

- the domain of f^{-1} is equal to the range of f and the range of f^{-1} is equal to the domain of f.

Inverse functions

Definition Suppose that $f: D \rightarrow \mathbb{R}$ is an injective function with range R. Then the inverse function $f^{-1}: R \rightarrow D$ is defined by

$$
f^{-1}(y)=x \text { whenever } f(x)=y
$$

Note that:

- the domain of f^{-1} is equal to the range of f and the range of f^{-1} is equal to the domain of f.
- f^{-1} is read as f inverse.

Inverse functions

Definition Suppose that $f: D \rightarrow \mathbb{R}$ is an injective function with range R. Then the inverse function $f^{-1}: R \rightarrow D$ is defined by

$$
f^{-1}(y)=x \text { whenever } f(x)=y
$$

Note that:

- the domain of f^{-1} is equal to the range of f and the range of f^{-1} is equal to the domain of f.
- f^{-1} is read as f inverse.
- $f^{-1}(x) \neq 1 / f(x)$ i.e. $f^{-1}(x)$ is not the same as $f(x)^{-1}$.

Inverse functions

Definition Suppose that $f: D \rightarrow \mathbb{R}$ is an injective function with range R. Then the inverse function $f^{-1}: R \rightarrow D$ is defined by

$$
f^{-1}(y)=x \text { whenever } f(x)=y
$$

Note that:

- the domain of f^{-1} is equal to the range of f and the range of f^{-1} is equal to the domain of f.
- f^{-1} is read as f inverse.
- $f^{-1}(x) \neq 1 / f(x)$ i.e. $f^{-1}(x)$ is not the same as $f(x)^{-1}$.
- $\left(f^{-1} \circ f\right)(x)=x$ for all $x \in D$.

Inverse functions

Definition Suppose that $f: D \rightarrow \mathbb{R}$ is an injective function with range R. Then the inverse function $f^{-1}: R \rightarrow D$ is defined by

$$
f^{-1}(y)=x \text { whenever } f(x)=y
$$

Note that:

- the domain of f^{-1} is equal to the range of f and the range of f^{-1} is equal to the domain of f.
- f^{-1} is read as f inverse.
- $f^{-1}(x) \neq 1 / f(x)$ i.e. $f^{-1}(x)$ is not the same as $f(x)^{-1}$.
- $\left(f^{-1} \circ f\right)(x)=x$ for all $x \in D$.
- $\left(f \circ f^{-1}\right)(y)=y$ for all $y \in R$.

Method for finding inverse functions

Example: Find the inverse of the function $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$ defined by $f(x)=x^{2}$.

Method for finding inverse functions

Example: Find the inverse of the function $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$ defined by $f(x)=x^{2}$.
Step 1 Solve $y=f(x)$ for x. We have $y=x^{2}$ and $x \geq 0$ so $x=\sqrt{y}$. Since the domain and range of f is \mathbb{R}^{+}, we obtain

$$
f^{-1}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+} \text {by } x=f^{-1}(y)=\sqrt{y}
$$

Method for finding inverse functions

Example: Find the inverse of the function $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$ defined by $f(x)=x^{2}$.
Step 1 Solve $y=f(x)$ for x. We have $y=x^{2}$ and $x \geq 0$ so $x=\sqrt{y}$. Since the domain and range of f is \mathbb{R}^{+}, we obtain

$$
f^{-1}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+} \text {by } x=f^{-1}(y)=\sqrt{y}
$$

Step 2 Relabel x and y so that y is the dependent variable and x is the independent variable. This gives:

$$
f^{-1}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+} \text {by } y=f^{-1}(x)=\sqrt{x}
$$

Relationship between graphs of f and f^{-1}

Lemma
The graphs of f and f^{-1} are interchanged by reflection in the line $y=x$.

Relationship between graphs of f and f^{-1}

Lemma

The graphs of f and f^{-1} are interchanged by reflection in the line $y=x$.

Example The graphs of $f(x)=x^{2}$ and $f^{-1}(x)=\sqrt{x}$.

Derivatives of inverse functions

Theorem

Suppose that $f: D \rightarrow \mathbb{R}$ is injective, differentiable and $f^{\prime}(x) \neq 0$ for all $x \in D$. Then f^{-1} is differentiable and its derivative $\left(f^{-1}\right)^{\prime}$ satisfies

$$
\left(f^{-1}\right)^{\prime}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

Equivalently, for all b in the domain of f^{-1} we have

$$
\left.\frac{d f^{-1}}{d x}\right|_{x=b}=\frac{1}{\left.\frac{d f}{d x}\right|_{x=f^{-1}(b)}}
$$

Derivatives of inverse functions

Theorem

Suppose that $f: D \rightarrow \mathbb{R}$ is injective, differentiable and $f^{\prime}(x) \neq 0$ for all $x \in D$. Then f^{-1} is differentiable and its derivative $\left(f^{-1}\right)^{\prime}$ satisfies

$$
\left(f^{-1}\right)^{\prime}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

Equivalently, for all b in the domain of f^{-1} we have

$$
\left.\frac{d f^{-1}}{d x}\right|_{x=b}=\frac{1}{\left.\frac{d f}{d x}\right|_{x=f^{-1}(b)}}
$$

Example $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$ by $f(x)=x^{2}$.

Definition Consider the function $f(x)=x^{-1}$. This is continuous on the closed interval $[a, b]$ for any $0<a<b$.

Definition Consider the function $f(x)=x^{-1}$. This is continuous on the closed interval $[a, b]$ for any $0<a<b$. The Fundamental Theorem of Calculus (Part 1) now tells us that $F(x)=\int_{1}^{x} t^{-1} d t$ is continuous on $[a, b]$ and differentiable on (a, b) for all $0<a<b$.

Definition Consider the function $f(x)=x^{-1}$. This is continuous on the closed interval $[a, b]$ for any $0<a<b$.
The Fundamental Theorem of Calculus (Part 1) now tells us that $F(x)=\int_{1}^{x} t^{-1} d t$ is continuous on $[a, b]$ and differentiable on (a, b) for all $0<a<b$.
This function F is an important function: it is called the natural logarithm function and is denoted by In. Thus

$$
\ln x=\int_{1}^{x} t^{-1} d t
$$

Properties of the natural logarithm function

Lemma

The domain of $\ln x$ is $(0, \infty)$ and its derivative is x^{-1}.

Rules for manipulating natural logarithms

Lemma

Suppose a, x are positive real numbers. Then
(1) $\ln a x=\ln a+\ln x$.
(2) $\ln \frac{1}{x}=-\ln x$.
(3) $\ln \frac{a}{x}=\ln a-\ln x$.
(9) $\ln x^{q}=q \ln x$ for any rational number q.

Rules for manipulating natural logarithms

Lemma

Suppose a, x are positive real numbers. Then
(1) $\ln a x=\ln a+\ln x$.
(2) $\ln \frac{1}{x}=-\ln x$.
(3) $\ln \frac{a}{x}=\ln a-\ln x$.
(9) $\ln x^{q}=q \ln x$ for any rational number q.

Examples:

(1) $\ln 8+\ln \cos x=$
(2) $\ln \frac{z^{2}+3}{2 z-1}=$
(3) $\ln \cot x=$
(9) $\ln \sqrt[5]{x-3}=$

Range of the natural logarithm function

Lemma
 The range of $\ln x$ is $(-\infty, \infty)$.

Range of the natural logarithm function

Lemma

The range of $\ln x$ is $(-\infty, \infty)$.

Definition The fact that the range of $\ln x$ is $(-\infty, \infty)$ implies in particular that $\ln x=1$ for some $x \in(0, \infty)$. The point e for which In $e=1$ is referred to as Euler's constant or the base of the natural logarithm. Its approximate numerical value is

$$
e=2.718281828459 \ldots
$$

Antiderivatives involving the natural logarithm

We have seen that $\ln x$ is an antiderivative for $1 / x$ for any interval $I \subset(0, \infty)$. Our next result extends this to all intervals which do not contain zero.

Antiderivatives involving the natural logarithm

We have seen that $\ln x$ is an antiderivative for $1 / x$ for any interval $I \subset(0, \infty)$. Our next result extends this to all intervals which do not contain zero.

Theorem

Let I be an interval. If $0 \notin I$ then $\ln |x|$ is an antiderivative for $f(x)=1 / x$ on I. More generally, if $g(x)$ is non-zero and differentiable on I, then $\ln |g(x)|$ is an antiderivative for $g^{\prime}(x) / g(x)$ on 1 .

Antiderivatives involving the natural logarithm

We have seen that $\ln x$ is an antiderivative for $1 / x$ for any interval $I \subset(0, \infty)$. Our next result extends this to all intervals which do not contain zero.

Theorem

Let I be an interval. If $0 \notin I$ then $\ln |x|$ is an antiderivative for $f(x)=1 / x$ on I. More generally, if $g(x)$ is non-zero and differentiable on I, then $\ln |g(x)|$ is an antiderivative for $g^{\prime}(x) / g(x)$ on 1 .

Example For $x \in(-\pi / 2, \pi / 2)$ we have

$$
\int \tan x d x=\ln |\sec x|+C
$$

Definition The natural logarithm function is injective and hence is invertible. Its inverse function $\exp (x)=\ln ^{-1}(x)$ is called the exponential function.

Properties of the exponential function

Lemma

The domain of $\exp x$ is \mathbb{R} and its range is $(0, \infty)$. The derivative of $\exp x$ is $\exp x$.

Recall that $1=\ln e$ where e is Euler's constant.

Recall that $1=\ln e$ where e is Euler's constant.
The fourth rule for manipulating natural logarithms now gives

$$
\ln e^{q}=q \ln e=q
$$

for any $q \in \mathbb{Q}$.

Recall that $1=\ln e$ where e is Euler's constant.
The fourth rule for manipulating natural logarithms now gives

$$
\ln e^{q}=q \ln e=q
$$

for any $q \in \mathbb{Q}$.
Applying the function exp to both sides gives

$$
e^{q}=\exp \left(\ln e^{q}\right)=\exp q
$$

for all $q \in \mathbb{Q}$.

Recall that $1=\ln e$ where e is Euler's constant.
The fourth rule for manipulating natural logarithms now gives

$$
\ln e^{q}=q \ln e=q
$$

for any $q \in \mathbb{Q}$.
Applying the function exp to both sides gives

$$
e^{q}=\exp \left(\ln e^{q}\right)=\exp q
$$

for all $q \in \mathbb{Q}$.
Since the right hand side of this equation, $\exp q$, is defined for all $q \in \mathbb{R}$, we can use it to define what e^{x} means when $x \in \mathbb{R} \backslash \mathbb{Q}$.

Recall that $1=\ln e$ where e is Euler's constant.
The fourth rule for manipulating natural logarithms now gives

$$
\ln e^{q}=q \ln e=q
$$

for any $q \in \mathbb{Q}$.
Applying the function exp to both sides gives

$$
e^{q}=\exp \left(\ln e^{q}\right)=\exp q
$$

for all $q \in \mathbb{Q}$.
Since the right hand side of this equation, $\exp q$, is defined for all $q \in \mathbb{R}$, we can use it to define what e^{x} means when $x \in \mathbb{R} \backslash \mathbb{Q}$.

Definition For every $x \in \mathbb{R}$, put $e^{x}=\exp x$.

Rules for manipulating powers of e

The definition of e^{x} makes sense only because $e^{x}=\exp x$ satisfies the usual rules for powers:

Lemma

Suppose $a, b \in \mathbb{R}$. Then
(1) $e^{a} \cdot e^{b}=e^{a+b}$
(2) $e^{-a}=1 / e^{a}$
(3) $e^{a} / e^{b}=e^{a-b}$
(9) $\left(e^{a}\right)^{b}=e^{a b}$

Read

Thomas' Calculus:

Section 7.7 Inverse trigonometric functions, and Section 7.8, Hyperbolic functions You will need this information for coursework 10!

