+ +
 Queen Mary University of London

MTH4100 Calculus I
Lecture notes for Week 11

Thomas' Calculus, Sections 5.5 and 7.1 to 7.8 (except Sections 7.5, 7.6)

Prof Bill Jackson
School of Mathematical Sciences
Queen Mary University of London

Autumn 2012

Calculating Areas

Total area

Example: Find the total area between the graph of $f(x)=x^{3}-x^{2}-2 x$ and the x-axis over the interval $[-1,2]$.

1. $f(x)=x\left(x^{2}-x-2\right)=x(x+1)(x-2):$ zeros are $-1,0,2$
2.

$$
\begin{aligned}
\int_{-1}^{0}\left(x^{3}-x^{2}-2 x\right) d x & =\left.\left(\frac{x^{4}}{4}-\frac{x^{3}}{3}-x^{2}\right)\right|_{-1} ^{0}=\frac{5}{12} \\
\int_{0}^{2}\left(x^{3}-x^{2}-2 x\right) d x & =\left.\left(\frac{x^{4}}{4}-\frac{x^{3}}{3}-x^{2}\right)\right|_{0} ^{2}=-\frac{8}{3}
\end{aligned}
$$

3. $A=\left|\frac{5}{12}\right|+\left|-\frac{8}{3}\right|=\frac{37}{12}$

In general, to find the total area between the graph of $y=f(x)$ and the x-axis over the interval $[a, b]$, do the following:

1. Draw a graph of f.
2. Subdivide $[a, b]$ at the zeros of f.
3. Integrate over each subinterval.
4. Add the absolute values of the integrals.

Symmetric functions

Theorem 1 Let f be a continuous function on the interval $[-a, a]$.
(a) If f is even, then $\int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x$.
(b) If f is odd, then $\int_{-a}^{a} f(x) d x=0$.
(c) If f is either even or odd, then the total area between the graph of $y=f(x)$ and the x-axis over the interval $[-a, a]$ is twice the total area between the graph of $y=f(x)$ and the x-axis over the interval $[0, a]$.

Proof Idea Split each integral \int_{-a}^{a} into two integrals $\int_{-a}^{0}+\int_{0}^{a}$ and then manipulate the first term, see Thomas P. 293 for part (a))

(a)

(b)

Areas between curves

We want to find the area between two curves $y=f(x)$ and $y=g(x)$ for $x \in[a, b]$, where $f(x) \geq g(x)$ for all $x \in[a, b]$.

We can estimate this area A as a limit of Riemann sums of vertical rectangles of height $f(x)-g(x)$ and width Δx. This gives:

$$
A=\int_{a}^{b} f(x)-g(x) d x
$$

Example: Find the area of the region R that is enclosed by the curves $y=\sqrt{x}, y=0$, and $y=x-2$.
(a) First solution:

We have
Area of $R=$ Area of $A+$ Area of B.
We determine the right-hand limit for A by solving the simultaneous equations $y=0$ and $y=x-2$, this gives $x=2$. We determine the right-hand limit for B by solving $y=\sqrt{x}$ and $y=x-2$, this gives $x=4$. Hence

$$
\text { Area of } \begin{aligned}
R & =\int_{0}^{2} \sqrt{x}-0 d x+\int_{2}^{4} \sqrt{x}-(x-2) d x \\
& =\left.\frac{2}{3} x^{3 / 2}\right|_{0} ^{2}+\left.\left(\frac{2}{3} x^{3 / 2}-\frac{1}{2} x^{2}+2 x\right)\right|_{2} ^{4} \\
& =\frac{10}{3}
\end{aligned}
$$

(b) Second solution:

The area below the curve $y=\sqrt{x}$ and above $[0,4]$ is

$$
A_{1}=\int_{0}^{4} \sqrt{x} d x=\left.\frac{2}{3} x^{3 / 2}\right|_{0} ^{4}=\frac{16}{3} .
$$

The area of the triangle is $A_{2}=2 \cdot 2 / 2=2$. Hence

$$
\text { Area of } R=A_{1}-A_{2}=\frac{16}{3}-2=\frac{10}{3} .
$$

(c) Third solution: We consider the area to be a limit of Riemann sums of horizontal rectangles rather than vertical rectangles. To do this we need to express the equations of the curves $y=\sqrt{x}$ and $y=x-2$ as functions with y as the dependent variable and x as the independent variable i.e. $x=y^{2}$ and $x=y+2$. Then each horizontal rectangle will have length $(y+2)-y^{2}$ and width Δy so the area of R is given by

$$
\int_{0}^{2} y+2-y^{2} d y=\left.\left(\frac{y^{2}}{2}+2 y-\frac{y^{3}}{3}\right)\right|_{0} ^{2}=\frac{10}{3}
$$

Inverse functions and their derivatives

Definition Let $f: D \rightarrow \mathbb{R}$ be a function. Then f is injective (or one-to-one) if $f\left(x_{1}\right) \neq f\left(x_{2}\right)$ whenever $x_{1} \neq x_{2}$.

Thus a function is injective if it takes on every value in its range exactly once.
Examples: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=x^{3}$ and $g: \mathbb{R}^{+} \rightarrow \mathbb{R}$ be defined by $g(x)=\sqrt{x}$, where $\mathbb{R}^{+}=\{x \in \mathbb{R}: x \geq 0\}$. Then f and g are both injective.

The horizontal line test for injective functions: A function is injective if and only if its graph intersects every horizontal line at most once.

Examples: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=x^{2}$ and $g:[0, \pi] \rightarrow \mathbb{R}$ be defined by $g(x)=\sin x$. Then neither f nor g is injective.

Note that if we restrict the domain of f to $\mathbb{R}^{+}=\{x \in \mathbb{R}: x \geq 0\}$ and the domain of g to $[0, \pi / 2]$ then the restricted functions will both be injective.
Definition Suppose that $f: D \rightarrow \mathbb{R}$ is an injective function with range R. Then the inverse function $f^{-1}: R \rightarrow D$ is defined by

$$
f^{-1}(y)=x \text { whenever } f(x)=y
$$

Note that:

- the domain of f^{-1} is equal to the range of f and the range of f^{-1} is equal to the domain of f.
- f^{-1} is read as f inverse.
- $f^{-1}(x) \neq 1 / f(x)$ i.e. $f^{-1}(x)$ is not the same as $f(x)^{-1}$.
- the composition $f^{-1} \circ f$ maps each element of D onto itself i.e. $\left(f^{-1} \circ f\right)(x)=x$ for all $x \in D$.
- the composition $f \circ f^{-1}$ maps each element of R onto itself i.e. $\left(f \circ f^{-1}\right)(y)=y$ for all $y \in R$.

Method for finding inverse functions:

Suppose that $f: D \rightarrow \mathbb{R}$ is an injective function with range R. When we write $y=f(x)$ we think of the dependent variable y as being a function of the independent variable x. To find f^{-1} we need to solve the equation $y=f(x)$ to express x as a function of y. This gives $x=f^{-1}(y)$ where x is now the dependent variable and y is the independent variable.
To obtain an expression for f^{-1} in the more standard form with y as the dependent variable and x is the independent variable we need to relabel x as y and y as x in the expression $x=f^{-1}(y)$.
Example: Find the inverse of the function $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$ by $f(x)=x^{2}$.
Step 1 Solve $y=f(x)$ for x. We have $y=x^{2}$ and $x \geq 0$ so $x=\sqrt{y}$.
Since the domain and range of f is \mathbb{R}^{+}, we obtain

$$
f^{-1}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+} \text {by } f^{-1}(y)=\sqrt{y}
$$

Step 2 Relabel y as x. This gives:

$$
f^{-1}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+} \text {by } f^{-1}(x)=\sqrt{x}
$$

Relationship between graphs of f and f^{-1}
Recall that the graph of f is the set of all points $P=(a, b)$ satisfying $b=f(a)$. Since $b=f(a)$ if and only if $a=f^{-1}(b)$ we have:

$$
P=(a, b) \text { is on the graph of } f \text { if and only if } Q=(b, a) \text { is on the graph of } f^{-1} .
$$

Since the points $P=(a, b)$ and $Q=(b, a)$ are interchanged by reflection in the line $y=x$ this implies:
the graphs of f and f^{-1} are interchanged by reflection in the line $y=x$.
Example See graphs of $f(x)=x^{2}$ and $f^{-1}(x)=\sqrt{x}$ above.

Derivatives of inverse functions

Theorem 2 Suppose that $f: D \rightarrow \mathbb{R}$ is injective, differentiable and $f^{\prime}(x) \neq 0$ for all $x \in D$. Then f^{-1} is differentiable and its derivative $\left(f^{-1}\right)^{\prime}$ satisfies

$$
\left(f^{-1}\right)^{\prime}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)} .
$$

Equivalently, for all b in the domain of f^{-1} we have

$$
\left.\frac{d f^{-1}}{d x}\right|_{x=b}=\frac{1}{\left.\frac{d f}{d x}\right|_{x=f^{-1}(b)}}
$$

Proof Let $y=f^{-1}(x)$. Then $x=f(y)$. We can differentiate this second equation using the chain rule to obtain

$$
1=\frac{d x}{d x}=\frac{d}{d x} f(y)=f^{\prime}(y) \frac{d y}{d x}
$$

and hence

$$
\frac{d y}{d x}=\frac{1}{f^{\prime}(y)}
$$

Since $y=f^{-1}(x)$, this gives

$$
\left(f^{-1}\right)^{\prime}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

Example: Let $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$ by $f(x)=x^{2}$. Then $f^{-1}(x)=\sqrt{x}$. We have $f^{\prime}(x)=2 x$ and $\left(f^{-1}\right)^{\prime}(x)=\frac{1}{2 \sqrt{x}}$. Hence

$$
\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}=\frac{1}{f^{\prime}(\sqrt{x})}=\frac{1}{2 \sqrt{x}}=\left(f^{-1}\right)^{\prime}(x)
$$

Note: The second part of the theorem can be used to find the value of the derivative of $f^{-1}(x)$ when $x=f(a)=b$ for any $a \in D$ without calculating the formula for f^{-1}.
Example continued: Suppose $f(x)=x^{2}$ and we want to determine the value of the derivative of $f^{-1}(x)$ when $x=f(2)=4$. We have $f^{-1}(4)=2$ so

$$
\left.\frac{d f^{-1}}{d x}\right|_{x=4}=\frac{1}{\left.\frac{d f}{d x}\right|_{x=2}}=\frac{1}{\left.2 x\right|_{x=2}}=\frac{1}{4} .
$$

Natural Logarithms

Definition Consider the function $f(x)=x^{-1}$. This is continuous on the closed interval $[a, b]$ for all $0<a<b$. The Fundamental Theorem of Calculus (Part 1) now tells us that $F(x)=\int_{1}^{x} t^{-1} d t$ is continuous on $[a, b]$ and differentiable on (a, b) for all $0<a<b$. This function F is an important function: it is called the natural logarithm function and is denoted by ln. Thus

$$
\ln x=\int_{1}^{x} t^{-1} d t
$$

Lemma 1 (Properties of the natural logarithm function) The domain of $\ln x$ is $(0, \infty)$ and its derivative is x^{-1}.

Proof The function $\ln x$ is defined for all $x>0$ so its domain is $(0, \infty)$. The fact that the derivative of $\ln x$ is $1 / x$ follows from the Fundamental Theorem of Calculus (Part 2):

$$
\frac{d}{d x} \ln x=\frac{d}{d x} \int_{1}^{x} t^{-1} d t=x^{-1} .
$$

Lemma 2 (Rules for manipulating natural logarithms) Suppose a, x are positive real numbers. Then

1. $\ln a x=\ln a+\ln x$.
2. $\ln \frac{1}{x}=-\ln x$.
3. $\ln \frac{a}{x}=\ln a-\ln x$.
4. $\ln x^{q}=q \ln x$ for any rational number q.

Proof of (1) By the chain rule

$$
\frac{d}{d x} \ln a x=\frac{1}{a x} \frac{d}{d x} a x=\frac{1}{a x} a=\frac{1}{x}=\frac{d}{d x} \ln x
$$

It follows that $\ln a x$ and $\ln x$ are both antiderivatives for $1 / x$ and hence

$$
\ln a x=\ln x+C
$$

for some constant C. Substituting $x=1$ we obtain

$$
\ln a=\ln 1+C=C
$$

since $\ln 1=\int_{1}^{1} t^{-1} d t=0$. Thus

$$
\ln a x=\ln x+\ln a .
$$

The proofs of rules (2)-(4) are similar, see Thomas page 372 .

Examples:

1. $\ln 8+\ln \cos x=\ln (8 \cos x)$
2. $\ln \frac{z^{2}+3}{2 z-1}=\ln \left(z^{2}+3\right)-\ln (2 z-1)$
3. $\ln \cot x=\ln \frac{1}{\tan x}=-\ln \tan x$
4. $\ln \sqrt[5]{x-3}=\ln (x-3)^{1 / 5}=\frac{1}{5} \ln (x-3)$

Lemma 3 (Range of the natural logarithm function) The range of $\ln x$ is $(-\infty, \infty)$.
Proof Since $1 / x \geq 1 / 2$ for $x \in[1,2]$, the min-max rule for definite integrals tells us that

$$
\ln 2=\int_{1}^{2} t^{-1} d t \geq(2-1) \frac{1}{2}=\frac{1}{2}
$$

We can now use Rule 4 for manipulating natural logarithms to deduce that $\ln 2^{n}=n \log 2 \geq$ $n / 2$ for any integer $n \geq 1$. Hence $\log 2^{n}$ becomes arbitrarily large and positive as n approaches infinity so $\lim _{n \rightarrow \infty} \log 2^{n}=\infty$. Since $\ln 2^{-n}=-\ln 2^{n}$, $\lim _{n \rightarrow \infty} \log 2^{-n}=-\infty$. The fact that $\ln x$ is continuous now implies that $\ln x$ takes all values in $(-\infty, \infty)$.
Definition The fact that the range of $\ln x$ is $(-\infty, \infty)$ implies in particular that $\ln x=1$ for some $x \in(0, \infty)$. The point e for which $\ln e=1$ is referred to as Euler's constant or the base of the natural logarithm. Its approximate numerical value is $e=e=2.718281828459 \ldots$

We have seen that $\ln x$ is an antiderivative for $1 / x$ for any interval $I \subset(0, \infty)$. Our next result extends this to all intervals which do not contain zero.

Theorem 3 Let I be an interval. If $0 \notin I$ then $\ln |x|$ is an antiderivative for $f(x)=$ $1 / x$ on I. More generally, if $g(x)$ is non-zero and differentiable on I, then $\ln |g(x)|$ is an antiderivative for $g^{\prime}(x) / g(x)$ on I.

Proof To show that $\ln |x|$ is an antiderivative for $f(x)=1 / x$ on I we need to show that $\frac{d}{d x} \ln |x|=1 / x$. We consider two cases.
Case 1: $I \subset(0, \infty)$. Then $\ln |x|=\ln x$ and $\frac{d}{d x} \ln |x|=\frac{d}{d x} \ln x=1 / x$.
Case 2: $I \subset(\infty, 0)$. Then $\ln |x|=\ln (-x)$ and

$$
\frac{d}{d x} \ln |x|=\frac{d}{d x} \ln (-x)=\frac{1}{-x} \frac{d}{d x}(-x)=\frac{-1}{-x}=\frac{1}{x}
$$

by the chain rule.
The second part of the lemma follows from the Substitution Law for Indefinite Integrals. We have seen that $F(x)=\ln |x|$ is an antiderivative for $1 / x$. The substitution law now tells us that $F(g(x))=\ln |g(x)|$ is an antiderivative for $g^{\prime}(x) / g(x)$.

Example For $x \in(-\pi / 2, \pi / 2)$ we have

$$
\begin{aligned}
\int \tan x d x & =\int \frac{\sin x}{\cos x} d x \\
& \left.=-\int \frac{1}{u} d u \quad \text { (Substitute } u=\cos x, \text { so } d u=\sin x\right) \\
& =-\ln |u|+C \\
& =-\ln |\cos x|+C \\
& =\ln (1 /|\cos x|)+C \\
& =\ln |\sec x|+C
\end{aligned}
$$

A similar calculation shows that

$$
\int \cot x d x=\ln |\sin x|+C
$$

for $x \in(0, \pi)$.

The Exponential Function

Definition The natural logarithm function $\ln x$ has domain $(0, \infty)$ and range \mathbb{R}. Since $\frac{d}{d x} \ln x=1 / x>0$ on $(0, \infty), \ln x$ is strictly increasing. This implies that $\ln x$ is injective and hence is invertible. Its inverse function $\exp (x)=\ln ^{-1}(x)$ is another important function. It is called the exponential function.

Lemma 4 (Properties of the exponential function) The domain of $\exp x$ is \mathbb{R} and its range is $(0, \infty)$. The derivative of $\exp x$ is $\exp x$.

Proof Since $\exp =\ln ^{-1}$, the domain of $\exp x$ is equal to the range of $\ln x$, which is \mathbb{R}, and the range of $\exp x$ is equal to the domain of $\ln x$, which is $(0, \infty)$. The statement about the derivative of $\exp x$ follows from our general result on derivatives of inverse functions,
but it is just as easy to calculate the derivative directly. Let $y=\exp x$. Then $x=\ln y$. Differentiating we get

$$
1=\frac{d x}{d x}=\frac{d}{d y} \ln y \frac{d y}{d x}=\frac{1}{y} \frac{d y}{d x} .
$$

Hence $\frac{d y}{d x}=y$. Since $y=\exp x$ this gives $\frac{d}{d x} \exp x=\exp x$.

Irrational powers of real numbers

We have defined what we mean by a^{q} for any real number $a>0$ and any rational number q. We can use the exponential function to extend this to a definition of a^{x} when x is irrational i.e. $x \in \mathbb{R} \backslash \mathbb{Q}$. We first express a^{q} in terms of the exponential function.

Lemma 5 Suppose a is a positive real number and $q \in \mathbb{Q}$. Then

$$
\begin{equation*}
a^{q}=\exp (q \ln a) . \tag{1}
\end{equation*}
$$

Proof The fourth rule for manipulating natural logarithms tells us that

$$
\ln a^{q}=q \ln a .
$$

Taking the exponential of both sides of this equation (and using exp $=\ln ^{-1}$) gives

$$
a^{q}=\exp \left(\ln a^{q}\right)=\exp (q \ln a) .
$$

Since the right hand side of (1) makes sense for all $q \in \mathbb{R}$ we can use it define a^{x} for all real numbers x.

Definition For any $a \in \mathbb{R}$ with $a>0$, the exponential function with base a is defined by putting

$$
a^{x}=e^{x \ln a}
$$

for all $x \in \mathbb{R}$.
Note that this definition implies that

$$
\begin{equation*}
\ln \left(a^{x}\right)=\ln [\exp (x \ln a)]=x \ln a \tag{2}
\end{equation*}
$$

and hence that the fourth rule for manipulating natural logarithms holds for all powers of a, not just rational powers.

For the definition of a^{x} to make sense we will need the exponent in a^{x} to behave in the same way as exponents for integer or rational powers of a. This follows from our next result.

Lemma 6 Suppose a is a positive real number and $b, c \in \mathbb{R}$. Then:

1. $a^{b} \cdot a^{c}=a^{b+c}$:
2. $\left(a^{b}\right)^{c}=a^{b c}$.

Proof By definition $a^{b}=\exp (b \ln a)$ and $a^{c}=\exp (c \ln a)$. Hence

$$
\begin{array}{rlr}
a^{b} \cdot a^{c} & =\exp \left[\ln \left(a^{b} \cdot a^{c}\right)\right] & \\
& =\exp \left[\ln \left(a^{b}\right)+\ln \left(a^{c}\right)\right] \quad \text { (by the first rule for manipulating logs) } \\
& =\exp [b \ln (a)+c \ln (a)] \quad \text { (by 2) } \\
& =\exp [(b+c) \ln (a)] & \\
& =a^{b+c} .
\end{array}
$$

Similarly

$$
\begin{aligned}
\left(a^{b}\right)^{c} & =\exp \left(c \ln a^{b}\right) \\
& =\exp (c \ln [\exp (b \ln a)]) \\
& =\exp (c b \ln (a)) \quad\left(\text { since } \exp =\ln ^{-1}\right) \\
& =a^{b c}
\end{aligned}
$$

Note: The exponential function with base a is differentiable for all $x \in \mathbb{R}$ and

$$
\frac{d}{d x} a^{x}=\frac{d}{d x} \exp (x \ln a)=\exp (x \ln a) \cdot \ln a=a^{x} \ln a
$$

by the chain rule. Hence

$$
\int a^{x} d x=\frac{a^{x}}{\ln a}+C
$$

when $a>0$ and $a \neq 1$.
Definition When $a>1, \frac{d}{d x} a^{x}=a^{x} \ln a$ is positive and hence $f(x)=a^{x}$ is strictly increasing for all $x \in \mathbb{R}$. When $0<a<1$, a similar argument shows that $f(x)=a^{x}$ is strictly decreasing for all $x \in \mathbb{R}$. This implies that $f(x)=a^{x}$ is injective for all $x \in \mathbb{R}$ for any fixed $a>0$ with $a \neq 1$. Hence its inverse function exists. This inverse function is called the logarithm of x to the base a and is denoted by $\log _{a} x$. We have

$$
\log _{a}\left(a^{x}\right)=x=a^{\log _{a} x}
$$

for all $x \in \mathbb{R}$. This gives

$$
\ln x=\ln \left(a^{\log _{a} x}\right)=\log _{a} x \cdot \ln a .
$$

and hence

$$
\log _{a} x=\frac{\ln x}{\ln a}
$$

Note: The algebra for $\log _{a} x$ is precisely the same as that for $\ln x$.

Further properties of the exponential function

The above definition of a^{x} gives us an alternative notation for $\exp (x)$. Recall that $1=\ln e$ where e is Euler's constant. This implies that

$$
e^{x}=\exp (x \ln e)=\exp x
$$

Henceforth we will often use e^{x} instead of $\exp x$.
We have seen that $\frac{d}{d x} e^{x}=e^{x}$. This gives

$$
\int e^{x} d x=e^{x}+C
$$

We can now use the chain rule to deduce:
Lemma 7 Let $f(x)$ be a differentiable function. Then

$$
\frac{d}{d x} e^{f(x)}=e^{f(x)} f^{\prime}(x)
$$

and

$$
\int e^{f(x)} f^{\prime}(x) d x=e^{f(x)}+C
$$

Examples:

1.

$$
\frac{d}{d x} e^{\sin x}=e^{\sin x} \frac{d}{d x} \sin x=e^{\sin x} \cos x
$$

2.

$$
\begin{aligned}
\int_{0}^{\ln 2} e^{3 x} d x & =\int_{0}^{\ln 8} e^{u} \frac{1}{3} d u \\
& =\left.\frac{1}{3} e^{u}\right|_{0} ^{\ln 8} \\
& =\frac{7}{3}
\end{aligned}
$$

We defined e via $\ln e=1$ and stated $e=2.718281828459 \ldots$.

Theorem 4 (The number e as a limit)

$$
e=\lim _{x \rightarrow 0}(1+x)^{1 / x}
$$

Proof We have

$$
\begin{aligned}
\ln \left(\lim _{x \rightarrow 0}(1+x)^{1 / x}\right) & \left.=\lim _{x \rightarrow 0}\left(\ln (1+x)^{1 / x}\right) \quad \text { (continuity of } \ln x\right) \\
& =\lim _{x \rightarrow 0}\left(\frac{1}{x} \ln (1+x)\right) \quad \text { (power rule) } \\
& =\lim _{x \rightarrow 0} \frac{1}{1+x} \quad \text { (l'Hôpital) } \\
& =1
\end{aligned}
$$

Taking exponentials of both sides gives:

$$
\lim _{x \rightarrow 0}(1+x)^{1 / x}=\exp \left[\ln \left(\lim _{x \rightarrow 0}(1+x)^{1 / x}\right)\right]=\exp 1=e
$$

Read

Thomas' Calculus:

Section 7.7 Inverse trigonometric functions, and Section 7.8, Hyperbolic functions
You will need this information for coursework 10!

The following two sections give a very brief summary of what can be found on these pages.

Inverse trigonometric functions

note: sin, cos, sec, csc, tan, cot are not injective unless the domain is restricted.
example:

Once the domains are suitably restricted, we can define:

$$
\begin{array}{rlrl}
\arcsin x & =\sin ^{-1} x & \operatorname{arccsc} x & =\csc ^{-1} x \\
\arccos x & =\cos ^{-1} x & \operatorname{arcsec} x=\sec ^{-1} x \\
\arctan x & =\tan ^{-1} x & & \operatorname{arccot} x=\cot ^{-1} x
\end{array}
$$

examples:

(a)

Domain: $-1 \leq x \leq 1$ Range: $\quad 0 \leq y \leq \pi$

(b)
.... and so on.

caution:

$$
\sin ^{-1} x \neq(\sin x)^{-1}
$$

Unfortunately this is inconsistent, since $\sin ^{2} x=(\sin x)^{2}$. Best to avoid $\sin ^{-1} x$ and use $\arcsin x$ etc. instead.
How to differentiate inverse trigonometric functions?
example: Differentiate $y=\arcsin x$.
Start with implicit differentiation of $\sin y=x$,

$$
\cos y \frac{d y}{d x}=1
$$

Solve for $\frac{d y}{d x}$:

$$
\frac{d y}{d x}=\frac{1}{\cos y}=\frac{1}{\sqrt{1-\sin ^{2} y}}
$$

for $-\pi / 2<y<\pi / 2(\cos x=0$ for $x= \pm \pi / 2)$. Therefore, for $|x|<1$,

$$
\frac{d}{d x} \arcsin x=\frac{1}{\sqrt{1-x^{2}}}
$$

and, conversely,

$$
\int \frac{d x}{\sqrt{1-x^{2}}}=\arcsin x+C
$$

example: Evaluate

$$
\int \frac{d x}{\sqrt{4 x-x^{2}}}
$$

Trick: complete the square!

$$
4 x-x^{2}=4-(x-2)^{2}
$$

Now integrate

$$
\begin{aligned}
\int \frac{d x}{\sqrt{4 x-x^{2}}} & =\int \frac{d x}{\sqrt{4-(x-2)^{2}}} \\
(u=x-2) & =\int \frac{d u}{\sqrt{4-u^{2}}} \\
& =\arcsin \frac{u}{2}+C \\
& =\arcsin \left(\frac{x}{2}-1\right)+C
\end{aligned}
$$

Hyperbolic functions

Every function f on $[-a, a]$ can be decomposed into

$$
f(x)=\underbrace{\frac{f(x)+f(-x)}{2}}_{\text {even function }}+\underbrace{\frac{f(x)-f(-x)}{2}}_{\text {odd function }}
$$

For $f(x)=e^{x}$:

$$
e^{x}=\underbrace{\frac{e^{x}+e^{-x}}{2}}_{=\cosh x}+\underbrace{\frac{e^{x}-e^{-x}}{2}}_{=\sinh x}
$$

called hyperbolic sine and hyperbolic cosine.
Define tanh, coth, sech, and csch in analogy to trigonometric functions.
examples:

$\sinh x=\frac{e^{x}-e^{-x}}{2}$

$\cosh x=\frac{e^{x}+e^{-x}}{2}$

Compare the following with trigonometric functions:

$$
\begin{aligned}
& \text { TABLE 7.6 Identities for } \\
& \text { hyperbolic functions } \\
& \begin{array}{l}
\cosh ^{2} x-\sinh ^{2} x=1 \\
\sinh 2 x=2 \sinh x \cosh x \\
\cosh 2 x=\cosh \\
\text { 2 } x+\sinh ^{2} x
\end{array} \\
& \cosh x=\frac{\cosh 2 x+1}{2} \\
& \sinh ^{2} x=\frac{\cosh 2 x-1}{2} \\
& \tanh ^{2} x=1-\operatorname{sech}^{2} x \\
& \operatorname{coth}^{2} x=1+\operatorname{csch}^{2} x
\end{aligned}
$$

How to differentiate hyperbolic functions?
example:

$$
\begin{aligned}
\frac{d}{d x} \sinh x & =\frac{d}{d x} \frac{e^{x}-e^{-x}}{2}=\frac{e^{x}+e^{-x}}{2}=\cosh x \\
\frac{d}{d x} \cosh x & =\frac{d}{d x} \frac{e^{x}+e^{-x}}{2}=\frac{e^{x}-e^{-x}}{2}=\sinh x
\end{aligned}
$$

Inverse hyperbolic functions defined in analogy to trigonometric functions.

