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Calculating Areas

Total area

Example: Find the total area between the graph of f(x) = x3 − x2 − 2x and the x-axis
over the interval [−1, 2].

1. f(x) = x(x2 − x − 2) = x(x + 1)(x − 2): zeros are −1, 0, 2

2.

∫ 0

−1

(x3 − x2 − 2x)dx =

(
x4

4
− x3

3
− x2

)∣∣∣∣
0

−1

=
5

12∫ 2

0

(x3 − x2 − 2x)dx =

(
x4

4
− x3

3
− x2

)∣∣∣∣
2

0

= −8

3

3. A =
∣∣ 5
12

∣∣ +
∣∣−8

3

∣∣ = 37
12

In general, to find the total area between the graph of y = f(x) and the x-axis over the
interval [a, b], do the following:

1. Draw a graph of f .

2. Subdivide [a, b] at the zeros of f .

3. Integrate over each subinterval.

4. Add the absolute values of the integrals.
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Symmetric functions

Theorem 1 Let f be a continuous function on the interval [−a, a].

(a) If f is even, then
∫ a

−a
f(x)dx = 2

∫ a

0
f(x)dx.

(b) If f is odd, then
∫ a

−a
f(x)dx = 0.

(c) If f is either even or odd, then the total area between the graph of y = f(x) and the
x-axis over the interval [−a, a] is twice the total area between the graph of y = f(x)
and the x-axis over the interval [0, a].

Proof Idea Split each integral
∫ a

−a
into two integrals

∫ 0

−a
+

∫ a

0
and then manipulate the

first term, see Thomas P.293 for part (a))

Areas between curves

We want to find the area between two curves y = f(x) and y = g(x) for x ∈ [a, b], where
f(x) ≥ g(x) for all x ∈ [a, b].

We can estimate this area A as a limit of Riemann sums of vertical rectangles of height
f(x) − g(x) and width Δx. This gives:

A =

∫ b

a

f(x) − g(x) dx
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Example: Find the area of the region R that is enclosed by the curves y =
√

x, y = 0, and
y = x − 2.
(a) First solution:

We have
Area of R = Area of A + Area of B.

We determine the right-hand limit for A by solving the simultaneous equations y = 0 and
y = x − 2, this gives x = 2. We determine the right-hand limit for B by solving y =

√
x

and y = x − 2, this gives x = 4. Hence

Area of R =

∫ 2

0

√
x − 0dx +

∫ 4

2

√
x − (x − 2)dx

=
2

3
x3/2

∣∣∣∣
2

0

+

(
2

3
x3/2 − 1

2
x2 + 2x

)∣∣∣∣
4

2

=
10

3
(b) Second solution:

The area below the curve y =
√

x and above [0, 4] is

A1 =

∫ 4

0

√
x dx =

2

3
x3/2

∣∣∣∣
4

0

=
16

3
.
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The area of the triangle is A2 = 2 · 2/2 = 2. Hence

Area of R = A1 − A2 =
16

3
− 2 =

10

3
.

(c) Third solution: We consider the area to be a limit of Riemann sums of horizontal
rectangles rather than vertical rectangles. To do this we need to express the equations of
the curves y =

√
x and y = x−2 as functions with y as the dependent variable and x as the

independent variable i.e. x = y2 and x = y + 2. Then each horizontal rectangle will have
length (y + 2) − y2 and width Δy so the area of R is given by

∫ 2

0

y + 2 − y2 dy =

(
y2

2
+ 2y − y3

3

)∣∣∣∣
2

0

=
10

3
.

Inverse functions and their derivatives

Definition Let f : D → R be a function. Then f is injective (or one-to-one) if f(x1) �= f(x2)
whenever x1 �= x2.

Thus a function is injective if it takes on every value in its range exactly once.

Examples: Let f : R → R be defined by f(x) = x3 and g : R+ → R be defined by
g(x) =

√
x, where R+ = {x ∈ R : x ≥ 0}. Then f and g are both injective.

The horizontal line test for injective functions: A function is injective if and only if
its graph intersects every horizontal line at most once.

Examples: Let f : R → R be defined by f(x) = x2 and g : [0, π] → R be defined by
g(x) = sin x. Then neither f nor g is injective.
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Note that if we restrict the domain of f to R+ = {x ∈ R : x ≥ 0} and the domain of g to
[0, π/2] then the restricted functions will both be injective.

Definition Suppose that f : D → R is an injective function with range R. Then the inverse
function f−1 : R → D is defined by

f−1(y) = x whenever f(x) = y.

Note that:

• the domain of f−1 is equal to the range of f and the range of f−1 is equal to the
domain of f .

• f−1 is read as f inverse.

• f−1(x) �= 1/f(x) i.e. f−1(x) is not the same as f(x)−1.

• the composition f−1 ◦ f maps each element of D onto itself i.e. (f−1 ◦ f)(x) = x for
all x ∈ D.

• the composition f ◦ f−1 maps each element of R onto itself i.e. (f ◦ f−1)(y) = y for
all y ∈ R.

Method for finding inverse functions:
Suppose that f : D → R is an injective function with range R. When we write y = f(x)
we think of the dependent variable y as being a function of the independent variable x. To
find f−1 we need to solve the equation y = f(x) to express x as a function of y. This gives
x = f−1(y) where x is now the dependent variable and y is the independent variable.
To obtain an expression for f−1 in the more standard form with y as the dependent variable
and x is the independent variable we need to relabel x as y and y as x in the expression
x = f−1(y).

Example: Find the inverse of the function f : R+ → R by f(x) = x2.

Step 1 Solve y = f(x) for x. We have y = x2 and x ≥ 0 so x =
√

y.
Since the domain and range of f is R+, we obtain

f−1 : R+ → R+ by f−1(y) =
√

y
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Step 2 Relabel y as x. This gives:

f−1 : R+ → R+ by f−1(x) =
√

x

Relationship between graphs of f and f−1

Recall that the graph of f is the set of all points P = (a, b) satisfying b = f(a). Since
b = f(a) if and only if a = f−1(b) we have:

P = (a, b) is on the graph of f if and only if Q = (b, a) is on the graph of f−1.

Since the points P = (a, b) and Q = (b, a) are interchanged by reflection in the line y = x
this implies:

the graphs of f and f−1 are interchanged by reflection in the line y = x.

Example See graphs of f(x) = x2 and f−1(x) =
√

x above.

Derivatives of inverse functions

Theorem 2 Suppose that f : D → R is injective, differentiable and f ′(x) �= 0 for all x ∈ D.
Then f−1 is differentiable and its derivative (f−1)′ satisfies

(f−1)′(x) =
1

f ′(f−1(x))
.

Equivalently, for all b in the domain of f−1 we have

df−1

dx

∣∣∣∣
x=b

=
1

df
dx

∣∣
x=f−1(b)

.

Proof Let y = f−1(x). Then x = f(y). We can differentiate this second equation using the
chain rule to obtain

1 =
dx

dx
=

d

dx
f(y) = f ′(y)

dy

dx

and hence
dy

dx
=

1

f ′(y)
.
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Since y = f−1(x), this gives

(f−1)′(x) =
1

f ′(f−1(x))
.

•
Example: Let f : R+ → R by f(x) = x2. Then f−1(x) =

√
x. We have f ′(x) = 2x and

(f−1)′(x) = 1
2
√

x
. Hence

1

f ′(f−1(x))
=

1

f ′(
√

x)
=

1

2
√

x
= (f−1)′(x) .

Note: The second part of the theorem can be used to find the value of the derivative of
f−1(x) when x = f(a) = b for any a ∈ D without calculating the formula for f−1.

Example continued: Suppose f(x) = x2 and we want to determine the value of the
derivative of f−1(x) when x = f(2) = 4. We have f−1(4) = 2 so

df−1

dx

∣∣∣∣
x=4

=
1

df
dx

∣∣
x=2

=
1

2x|x=2

=
1

4
.

Natural Logarithms

Definition Consider the function f(x) = x−1. This is continuous on the closed interval
[a, b] for all 0 < a < b. The Fundamental Theorem of Calculus (Part 1) now tells us
that F (x) =

∫ x

1
t−1dt is continuous on [a, b] and differentiable on (a, b) for all 0 < a < b.

This function F is an important function: it is called the natural logarithm function and is
denoted by ln. Thus

ln x =

∫ x

1

t−1 dt .
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Lemma 1 (Properties of the natural logarithm function) The domain of ln x is (0,∞)
and its derivative is x−1.

Proof The function ln x is defined for all x > 0 so its domain is (0,∞). The fact that the
derivative of ln x is 1/x follows from the Fundamental Theorem of Calculus (Part 2):

d

dx
lnx =

d

dx

∫ x

1

t−1dt = x−1 .

•
Lemma 2 (Rules for manipulating natural logarithms) Suppose a, x are positive real
numbers. Then

1. ln ax = ln a + ln x.

2. ln 1
x

= − ln x.

3. ln a
x

= ln a − ln x.

4. ln xq = q ln x for any rational number q.

Proof of (1) By the chain rule

d

dx
ln ax =

1

ax

d

dx
ax =

1

ax
a =

1

x
=

d

dx
ln x

It follows that ln ax and ln x are both antiderivatives for 1/x and hence

ln ax = ln x + C

for some constant C. Substituting x = 1 we obtain

ln a = ln 1 + C = C
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since ln 1 =
∫ 1

1
t−1dt = 0. Thus

ln ax = ln x + ln a .

The proofs of rules (2)-(4) are similar, see Thomas page 372. •
Examples:

1. ln 8 + ln cosx = ln(8 cos x)

2. ln
z2 + 3

2z − 1
= ln(z2 + 3) − ln(2z − 1)

3. ln cot x = ln
1

tanx
= − ln tanx

4. ln 5
√

x − 3 = ln(x − 3)1/5 =
1

5
ln(x − 3)

Lemma 3 (Range of the natural logarithm function) The range of ln x is (−∞,∞).

Proof Since 1/x ≥ 1/2 for x ∈ [1, 2], the min-max rule for definite integrals tells us that

ln 2 =

∫ 2

1

t−1dt ≥ (2 − 1)
1

2
=

1

2
.

We can now use Rule 4 for manipulating natural logarithms to deduce that ln 2n = n log 2 ≥
n/2 for any integer n ≥ 1. Hence log 2n becomes arbitrarily large and positive as n ap-
proaches infinity so limn→∞ log 2n = ∞. Since ln 2−n = − ln 2n, limn→∞ log 2−n = −∞. The
fact that ln x is continuous now implies that ln x takes all values in (−∞,∞). •
Definition The fact that the range of ln x is (−∞,∞) implies in particular that lnx = 1 for
some x ∈ (0,∞). The point e for which ln e = 1 is referred to as Euler’s constant or the base
of the natural logarithm. Its approximate numerical value is e = e = 2.718281828459 . . .

We have seen that ln x is an antiderivative for 1/x for any interval I ⊂ (0,∞). Our next
result extends this to all intervals which do not contain zero.

Theorem 3 Let I be an interval. If 0 �∈ I then ln |x| is an antiderivative for f(x) =
1/x on I. More generally, if g(x) is non-zero and differentiable on I, then ln |g(x)| is an
antiderivative for g′(x)/g(x) on I.

Proof To show that ln |x| is an antiderivative for f(x) = 1/x on I we need to show that
d
dx

ln |x| = 1/x. We consider two cases.
Case 1: I ⊂ (0,∞). Then ln |x| = ln x and d

dx
ln |x| = d

dx
ln x = 1/x.

Case 2: I ⊂ (∞, 0). Then ln |x| = ln(−x) and

d

dx
ln |x| =

d

dx
ln(−x) =

1

−x

d

dx
(−x) =

−1

−x
=

1

x

by the chain rule.

The second part of the lemma follows from the Substitution Law for Indefinite Integrals.
We have seen that F (x) = ln |x| is an antiderivative for 1/x. The substitution law now tells
us that F (g(x)) = ln |g(x)| is an antiderivative for g′(x)/g(x). •
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Example For x ∈ (−π/2, π/2) we have∫
tanx dx =

∫
sin x

cos x
dx

= −
∫

1

u
du (Substitute u = cos x, so du = sin x)

= − ln |u| + C

= − ln | cos x| + C

= ln(1/| cosx|) + C

= ln | sec x| + C

A similar calculation shows that∫
cotx dx = ln | sinx| + C

for x ∈ (0, π).

The Exponential Function
Definition The natural logarithm function ln x has domain (0,∞) and range R. Since
d
dx

lnx = 1/x > 0 on (0,∞), lnx is strictly increasing. This implies that ln x is injective and
hence is invertible. Its inverse function exp(x) = ln−1(x) is another important function. It
is called the exponential function.

Lemma 4 (Properties of the exponential function) The domain of exp x is R and its
range is (0,∞). The derivative of exp x is exp x.

Proof Since exp = ln−1, the domain of exp x is equal to the range of lnx, which is R, and
the range of exp x is equal to the domain of ln x, which is (0,∞). The statement about
the derivative of exp x follows from our general result on derivatives of inverse functions,
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but it is just as easy to calculate the derivative directly. Let y = exp x. Then x = ln y.
Differentiating we get

1 =
dx

dx
=

d

dy
ln y

dy

dx
=

1

y

dy

dx
.

Hence dy
dx

= y. Since y = exp x this gives d
dx

exp x = exp x. •

Irrational powers of real numbers

We have defined what we mean by aq for any real number a > 0 and any rational number q.
We can use the exponential function to extend this to a definition of ax when x is irrational
i.e. x ∈ R \ Q. We first express aq in terms of the exponential function.

Lemma 5 Suppose a is a positive real number and q ∈ Q. Then

aq = exp(q ln a) . (1)

Proof The fourth rule for manipulating natural logarithms tells us that

ln aq = q ln a .

Taking the exponential of both sides of this equation (and using exp = ln−1) gives

aq = exp(ln aq) = exp(q ln a) .

•
Since the right hand side of (1) makes sense for all q ∈ R we can use it define ax for all real
numbers x.

Definition For any a ∈ R with a > 0, the exponential function with base a is defined by
putting

ax = ex ln a

for all x ∈ R.

Note that this definition implies that

ln(ax) = ln[exp(x ln a)] = x ln a (2)

and hence that the fourth rule for manipulating natural logarithms holds for all powers of
a, not just rational powers.

For the definition of ax to make sense we will need the exponent in ax to behave in the same
way as exponents for integer or rational powers of a. This follows from our next result.

Lemma 6 Suppose a is a positive real number and b, c ∈ R. Then:

1. ab · ac = ab+c :

2. (ab)c = abc .
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Proof By definition ab = exp(b ln a) and ac = exp(c ln a). Hence

ab · ac = exp[ln(ab · ac)]

= exp[ln(ab) + ln(ac)] (by the first rule for manipulating logs)

= exp[b ln(a) + c ln(a)] (by 2)

= exp[(b + c) ln(a)]

= ab+c .

Similarly

(ab)c = exp(c ln ab)

= exp(c ln[exp(b ln a)])

= exp(cb ln(a)) (since exp = ln−1)

= abc .

•
Note: The exponential function with base a is differentiable for all x ∈ R and

d

dx
ax =

d

dx
exp(x ln a) = exp(x ln a) · ln a = ax ln a

by the chain rule. Hence ∫
ax dx =

ax

ln a
+ C

when a > 0 and a �= 1.

Definition When a > 1, d
dx

ax = ax ln a is positive and hence f(x) = ax is strictly increasing
for all x ∈ R. When 0 < a < 1, a similar argument shows that f(x) = ax is strictly
decreasing for all x ∈ R. This implies that f(x) = ax is injective for all x ∈ R for any fixed
a > 0 with a �= 1. Hence its inverse function exists. This inverse function is called the
logarithm of x to the base a and is denoted by loga x. We have

loga(a
x) = x = aloga x

for all x ∈ R. This gives
ln x = ln

(
aloga x

)
= loga x · ln a .

and hence

loga x =
ln x

ln a

Note: The algebra for loga x is precisely the same as that for lnx.

Further properties of the exponential function

The above definition of ax gives us an alternative notation for exp(x). Recall that 1 = ln e
where e is Euler’s constant. This implies that

ex = exp(x ln e) = exp x.
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Henceforth we will often use ex instead of exp x.

We have seen that d
dx

ex = ex. This gives∫
exdx = ex + C .

We can now use the chain rule to deduce:

Lemma 7 Let f(x) be a differentiable function. Then

d

dx
ef(x) = ef(x)f ′(x)

and ∫
ef(x)f ′(x)dx = ef(x) + C .

Examples:

1.
d

dx
esin x = esin x d

dx
sin x = esin x cos x

2. ∫ ln 2

0

e3xdx =

∫ ln 8

0

eu 1

3
du

=
1

3
eu

∣∣∣∣
ln 8

0

=
7

3

We defined e via ln e = 1 and stated e = 2.718281828459 . . ..

Theorem 4 (The number e as a limit)

e = lim
x→0

(1 + x)1/x

Proof We have

ln
(

lim
x→0

(1 + x)1/x
)

= lim
x→0

(
ln(1 + x)1/x

)
(continuity of ln x )

= lim
x→0

(
1

x
ln(1 + x)

)
(power rule)

= lim
x→0

1

1 + x
(l’Hôpital)

= 1

Taking exponentials of both sides gives:

lim
x→0

(1 + x)1/x = exp
[
ln

(
lim
x→0

(1 + x)1/x
)]

= exp 1 = e .

•
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Read

Thomas’ Calculus:

Section 7.7 Inverse trigonometric functions,

and Section 7.8, Hyperbolic functions

You will need this information for coursework 10!

The following two sections give a very brief summary of what can be found on these pages.

Inverse trigonometric functions

note: sin, cos, sec, csc, tan, cot are not injective unless the domain is restricted.

example:

Once the domains are suitably restricted, we can define:

arcsin x = sin−1 x arccsc x = csc−1 x

arccos x = cos−1 x arcsec x = sec−1 x

arctanx = tan−1 x arccotx = cot−1 x

examples:
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. . . and so on.
caution: sin−1 x �= (sin x)−1

Unfortunately this is inconsistent, since sin2 x = (sin x)2. Best to avoid sin−1 x and use
arcsin x etc. instead.
How to differentiate inverse trigonometric functions?
example: Differentiate y = arcsin x.
Start with implicit differentiation of sin y = x,

cos y
dy

dx
= 1 .

Solve for dy
dx

:
dy

dx
=

1

cos y
=

1√
1 − sin2 y

for −π/2 < y < π/2 (cos x = 0 for x = ±π/2). Therefore, for |x| < 1,

d

dx
arcsin x =

1√
1 − x2

and, conversely, ∫
dx√

1 − x2
= arcsin x + C .

example: Evaluate ∫
dx√

4x − x2
.

Trick: complete the square!
4x − x2 = 4 − (x − 2)2

Now integrate ∫
dx√

4x − x2
=

∫
dx√

4 − (x − 2)2

(u = x − 2) =

∫
du√

4 − u2

= arcsin
u

2
+ C

= arcsin
(x

2
− 1

)
+ C
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Hyperbolic functions

Every function f on [−a, a] can be decomposed into

f(x) =
f(x) + f(−x)

2︸ ︷︷ ︸
even function

+
f(x) − f(−x)

2︸ ︷︷ ︸
odd function

For f(x) = ex:

ex =
ex + e−x

2︸ ︷︷ ︸
=cosh x

+
ex − e−x

2︸ ︷︷ ︸
=sinhx

,

called hyperbolic sine and hyperbolic cosine.
Define tanh, coth, sech, and csch in analogy to trigonometric functions.
examples:

sinh x =
ex − e−x

2
cosh x =

ex + e−x

2

Compare the following with trigonometric functions:
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How to differentiate hyperbolic functions?
example:

d

dx
sinh x =

d

dx

ex − e−x

2
=

ex + e−x

2
= cosh x

d

dx
cosh x =

d

dx

ex + e−x

2
=

ex − e−x

2
= sinh x

Inverse hyperbolic functions defined in analogy to trigonometric functions.


