MTH4100 Calculus I

Bill Jackson
School of Mathematical Sciences QMUL

Week 10, Semester 1, 2012

Riemann sums

Let f be a continuous function on a closed interval $[a, b]$.

Let f be a continuous function on a closed interval $[a, b]$.

- Construct a partition P of the interval $[a, b]$ into n subintervals by choosing $n+1$ points $x_{0}, x_{1}, \ldots, x_{n}$ between a and b where $a=x_{0}<x_{1}<x_{2}<\ldots<x_{n-1}<x_{n}=b$.

Let f be a continuous function on a closed interval $[a, b]$.

- Construct a partition P of the interval $[a, b]$ into n subintervals by choosing $n+1$ points $x_{0}, x_{1}, \ldots, x_{n}$ between a and b where $a=x_{0}<x_{1}<x_{2}<\ldots<x_{n-1}<x_{n}=b$.
- The k 'th subinterval of P is $\left[x_{k-1}, x_{k}\right]$ and the width of this subinterval is $\Delta x_{k}=x_{k}-x_{k-1}$.

Let f be a continuous function on a closed interval $[a, b]$.

- Construct a partition P of the interval $[a, b]$ into n subintervals by choosing $n+1$ points $x_{0}, x_{1}, \ldots, x_{n}$ between a and b where $a=x_{0}<x_{1}<x_{2}<\ldots<x_{n-1}<x_{n}=b$.
- The k 'th subinterval of P is $\left[x_{k-1}, x_{k}\right]$ and the width of this subinterval is $\Delta x_{k}=x_{k}-x_{k-1}$.
- Choose a point $c_{k} \in\left[x_{k-1}, x_{k}\right]$.

Let f be a continuous function on a closed interval $[a, b]$.

- Construct a partition P of the interval $[a, b]$ into n subintervals by choosing $n+1$ points $x_{0}, x_{1}, \ldots, x_{n}$ between a and b where $a=x_{0}<x_{1}<x_{2}<\ldots<x_{n-1}<x_{n}=b$.
- The k 'th subinterval of P is $\left[x_{k-1}, x_{k}\right]$ and the width of this subinterval is $\Delta x_{k}=x_{k}-x_{k-1}$.
- Choose a point $c_{k} \in\left[x_{k-1}, x_{k}\right]$.
- The sum $\sum_{k=1}^{n} f\left(c_{k}\right) \Delta x_{k}$ is called the Riemann sum for f on $[a, b]$ with respect to the partition P and the choice of the points c_{k}.

Riemann sums

Let f be a continuous function on a closed interval $[a, b]$.

- Construct a partition P of the interval $[a, b]$ into n subintervals by choosing $n+1$ points $x_{0}, x_{1}, \ldots, x_{n}$ between a and b where $a=x_{0}<x_{1}<x_{2}<\ldots<x_{n-1}<x_{n}=b$.
- The k 'th subinterval of P is $\left[x_{k-1}, x_{k}\right]$ and the width of this subinterval is $\Delta x_{k}=x_{k}-x_{k-1}$.
- Choose a point $c_{k} \in\left[x_{k-1}, x_{k}\right]$.
- The sum $\sum_{k=1}^{n} f\left(c_{k}\right) \Delta x_{k}$ is called the Riemann sum for f on $[a, b]$ with respect to the partition P and the choice of the points c_{k}.
- The special cases when we choose c_{k} to be the maximum or minimum value of f on $\left[x_{k-1}, x_{k}\right]$ are called the upper and lower sums, respectively.

Definition Let f be a function defined on a closed interval $[a, b]$. A real number J is the definite integral of f over $[a, b]$ if J is the limit of all possible Riemann sums for f on $[a, b]$ as the width of the largest subinterval in the partitions goes to zero. If such a number J exists we write

$$
J=\int_{a}^{b} f(x) d x
$$

and say that f is integrable over $[a, b]$.

The indefinite integral

Definition Let f be a function defined on a closed interval $[a, b]$. A real number J is the definite integral of f over $[a, b]$ if J is the limit of all possible Riemann sums for f on $[a, b]$ as the width of the largest subinterval in the partitions goes to zero. If such a number J exists we write

$$
J=\int_{a}^{b} f(x) d x
$$

and say that f is integrable over $[a, b]$.
To decide if f is integrable over $[a, b]$ it suffices to show that the upper sums and the lower sums have the same limit (since all other Riemann sums are sandwiched between these two sums).

Existence theorem for definite integrals

Theorem

Suppose that f is a continuous function on a closed interval $[a, b]$. Then f is integrable over $[a, b]$.

Existence theorem for definite integrals

Theorem

Suppose that f is a continuous function on a closed interval $[a, b]$. Then f is integrable over $[a, b]$.

If f is discontinuous then it may not be integrable.
Example:

$$
f(x)= \begin{cases}0 & \text { if } x \in \mathbb{Q} \\ 1 & \text { if } x \in \mathbb{R} \backslash \mathbb{Q}\end{cases}
$$

Rules for definite integrals

Theorem

Suppose that f and g are integrable functions on $[a, b]$. Then:
(a) $\int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x$ (reversing limits of integration);

Rules for definite integrals

Theorem

Suppose that f and g are integrable functions on $[a, b]$. Then:
(a) $\int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x$ (reversing limits of integration);
(b) $\int_{a}^{a} f(x) d x=0$ (area over a point is zero);

Rules for definite integrals

Theorem

Suppose that f and g are integrable functions on $[a, b]$. Then:
(a) $\int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x$ (reversing limits of integration);
(b) $\int_{a}^{a} f(x) d x=0$ (area over a point is zero);
(c) $\int_{a}^{b} k f(x) d x=k \int_{a}^{b} f(x) d x$ for any constant $k \in \mathbb{R}$ (area scales by a constant multiplier);

Rules for definite integrals

Theorem

Suppose that f and g are integrable functions on $[a, b]$. Then:
(a) $\int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x$ (reversing limits of integration);
(b) $\int_{a}^{a} f(x) d x=0$ (area over a point is zero);
(c) $\int_{a}^{b} k f(x) d x=k \int_{a}^{b} f(x) d x$ for any constant $k \in \mathbb{R}$ (area scales by a constant multiplier);
(d) $\int_{a}^{b}(f(x)+g(x)) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x$ (areas add);

Rules for definite integrals

Theorem

Suppose that f and g are integrable functions on $[a, b]$. Then:
(a) $\int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x$ (reversing limits of integration);
(b) $\int_{a}^{a} f(x) d x=0$ (area over a point is zero);
(c) $\int_{a}^{b} k f(x) d x=k \int_{a}^{b} f(x) d x$ for any constant $k \in \mathbb{R}$ (area scales by a constant multiplier);
(d) $\int_{a}^{b}(f(x)+g(x)) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x$ (areas add);
(e) $\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$ for any $c \in[a, b]$ (areas add);

Rules for definite integrals

Theorem

Suppose that f and g are integrable functions on $[a, b]$. Then:
(a) $\int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x$ (reversing limits of integration);
(b) $\int_{a}^{a} f(x) d x=0$ (area over a point is zero);
(c) $\int_{a}^{b} k f(x) d x=k \int_{a}^{b} f(x) d x$ for any constant $k \in \mathbb{R}$ (area scales by a constant multiplier);
(d) $\int_{a}^{b}(f(x)+g(x)) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x$ (areas add);
(e) $\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$ for any $c \in[a, b]$ (areas add);
(f) If m is the absolute minimum of f on $[a, b]$ and M is the absolute maximum of f on $[a, b]$ then
$m(b-a) \leq \int_{a}^{b} f(x) d x \leq M(b-a)$ (max-min inequality);

Rules for definite integrals

Theorem

Suppose that f and g are integrable functions on $[a, b]$. Then:
(a) $\int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x$ (reversing limits of integration);
(b) $\int_{a}^{a} f(x) d x=0$ (area over a point is zero);
(c) $\int_{a}^{b} k f(x) d x=k \int_{a}^{b} f(x) d x$ for any constant $k \in \mathbb{R}$ (area scales by a constant multiplier);
(d) $\int_{a}^{b}(f(x)+g(x)) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x$ (areas add);
(e) $\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$ for any $c \in[a, b]$ (areas add);
(f) If m is the absolute minimum of f on $[a, b]$ and M is the absolute maximum of f on $[a, b]$ then
$m(b-a) \leq \int_{a}^{b} f(x) d x \leq M(b-a)$ (max-min inequality);
(g) If $f(x) \leq g(x)$ for all $x \in[a, b]$ then $\int_{a}^{b} f(x) d x \leq \int_{a}^{b} g(x) d x$ (domination).

DEFINITION The Average or Mean Value of a Function

If f is integrable on $[a, b]$, then its average value on $[a, b]$, also called its mean value, is

$$
\operatorname{av}(f)=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

DEFINITION The Average or Mean Value of a Function

If f is integrable on $[a, b]$, then its average value on $[a, b]$, also called its mean value, is

$$
\operatorname{av}(f)=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

Example: $f(x)=1-x^{2}, x \in[0,1]$.

The mean value theorem for definite integrals

Theorem (The mean value theorem for definite integrals)
Suppose f is continuous on $[a, b]$. Then there is a $c \in[a, b]$ with

$$
f(c)=\frac{1}{b-a} \int_{a}^{b} f(x) d x=a v(f)
$$

The mean value theorem for definite integrals

Theorem (The mean value theorem for definite integrals)
Suppose f is continuous on $[a, b]$. Then there is a $c \in[a, b]$ with

$$
f(c)=\frac{1}{b-a} \int_{a}^{b} f(x) d x=a v(f)
$$

Example: $f(x)=1-x^{2}, x \in[0,1]$.

The mean value theorem for definite integrals

Theorem (The mean value theorem for definite integrals)
Suppose f is continuous on $[a, b]$. Then there is a $c \in[a, b]$ with

$$
f(c)=\frac{1}{b-a} \int_{a}^{b} f(x) d x=a v(f) .
$$

Example: $f(x)=1-x^{2}, x \in[0,1]$.

Corollary

Suppose f is a continuous function on a closed interval $[a, b]$ with $a \neq b$ and $\int_{a}^{b} f(x) d x=0$. Then there is a $c \in[a, b]$ with $f(c)=0$.

Antiderivatives and definite integrals

Aim: use antiderivatives to calculate definite integrals.

Antiderivatives and definite integrals

Aim: use antiderivatives to calculate definite integrals. Given a continuous function f on a closed interval $[a, b]$, define a new function F by putting

$$
F(x)=\int_{a}^{x} f(t) d t
$$

for all $x \in[a, b]$.

Antiderivatives and definite integrals

Aim: use antiderivatives to calculate definite integrals. Given a continuous function f on a closed interval $[a, b]$, define a new function F by putting

$$
F(x)=\int_{a}^{x} f(t) d t
$$

for all $x \in[a, b]$.

Example $f(x)=x$ on $[0, b]$ for some $b>0$.

Part 1 tells us that $F(x)=\int_{a}^{x} f(t) d t$ is an antiderivative of f.

Part 1 tells us that $F(x)=\int_{a}^{x} f(t) d t$ is an antiderivative of f.

Theorem (Fundamental Theorem of Calculus - Part 1)

Let f be a continuous function on a closed interval $[a, b]$. Then $F(x)=\int_{a}^{x} f(t) d t$ is continuous on $[a, b]$ and differentiable on (a, b). Furthermore, the derivative of $F(x)$ is $f(x)$ i.e.

$$
\frac{d}{d x} F(x)=\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)
$$

Fundamental Theorem of Calculus - Part 1

Part 1 tells us that $F(x)=\int_{a}^{x} f(t) d t$ is an antiderivative of f.

Theorem (Fundamental Theorem of Calculus - Part 1)

Let f be a continuous function on a closed interval $[a, b]$. Then $F(x)=\int_{a}^{x} f(t) d t$ is continuous on $[a, b]$ and differentiable on (a, b). Furthermore, the derivative of $F(x)$ is $f(x)$ i.e.

$$
\frac{d}{d x} F(x)=\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)
$$

Examples: Find
(1)

$$
\frac{d}{d x} \int_{a}^{x} \frac{1}{1+4 t^{3}} d t
$$

(2)

$$
\frac{d}{d x} \int_{2}^{x^{2}} \cos t d t
$$

Fundamental Theorem of Calculus - Part 2

Part 2 tells us how to use antiderivatives to calculate definite integrals.

Fundamental Theorem of Calculus - Part 2

Part 2 tells us how to use antiderivatives to calculate definite integrals.

Theorem (Fundamental Theorem of Calculus - Part 2)

Let f be a continuous function on a closed interval $[a, b]$ and F be ANY antiderivative for f. Then

$$
\int_{a}^{b} f(t) d t=F(b)-F(a)
$$

Calculating definite integrals

Method to evaluate $\int_{a}^{b} f(x) d x$
Step 1 Find an antiderivative F of f.
Step 2 Calculate $F(b)-F(a)$.

Calculating definite integrals

Method to evaluate $\int_{a}^{b} f(x) d x$
Step 1 Find an antiderivative F of f.
Step 2 Calculate $F(b)-F(a)$.
Notation: Let $F(b)-F(a)=\left.F(x)\right|_{a} ^{b}$.

Calculating definite integrals

Method to evaluate $\int_{a}^{b} f(x) d x$
Step 1 Find an antiderivative F of f.
Step 2 Calculate $F(b)-F(a)$.
Notation: Let $F(b)-F(a)=\left.F(x)\right|_{a} ^{b}$.
Example: Find

$$
\int_{1}^{4}\left(\frac{3}{2} \sqrt{x}-\frac{4}{x^{2}}\right) d x
$$

The substitution rule gives us a technique for calculating certain integrals.

The substitution rule gives us a technique for calculating certain integrals.

We first consider indefinite integrals. Recall that the indefinite integral $\int f(x) d x$ is the general antiderivative for $f(x)$, and that it has the form $F(x)+C$ where $F^{\prime}(x)=f(x)$ and C is an arbitrary constant.

The substitution rule gives us a technique for calculating certain integrals.

We first consider indefinite integrals. Recall that the indefinite integral $\int f(x) d x$ is the general antiderivative for $f(x)$, and that it has the form $F(x)+C$ where $F^{\prime}(x)=f(x)$ and C is an arbitrary constant.

Example Evaluate

$$
\int \frac{2 z}{\sqrt[3]{z^{2}+5}} d z
$$

The substitution rule - indefinite integrals

Theorem (Substitution Rule for Indefinite Integrals)

Suppose g is a differentiable function and f is continuous function on the range of g. Let $F(x)$ be an antiderivative for $f(x)$. Then $F(g(x))$ is an antiderivative for $f(g(x)) g^{\prime}(x)$. Equivalently, if we put $u=g(x)$, then we have

$$
\int f(g(x)) g^{\prime}(x) d x=\int f(u) d u
$$

The substitution rule - indefinite integrals

Theorem (Substitution Rule for Indefinite Integrals)

Suppose g is a differentiable function and f is continuous function on the range of g. Let $F(x)$ be an antiderivative for $f(x)$. Then $F(g(x))$ is an antiderivative for $f(g(x)) g^{\prime}(x)$. Equivalently, if we put $u=g(x)$, then we have

$$
\int f(g(x)) g^{\prime}(x) d x=\int f(u) d u
$$

Method for evaluating

$$
\int f(g(x)) g^{\prime}(x) d x
$$

(1) Substitute $u=g(x), d u=g^{\prime}(x) d x$ to obtain $\int f(u) d u$.
(2) Integrate with respect to u.
(3) Replace u by $g(x)$.

The substitution rule - definite integrals

Theorem (Substitution Rule for Definite Integrals)

Suppose g is a differentiable function, g^{\prime} is continuous on $[a, b]$, and f is continuous on the range of g. Then

$$
\int_{a}^{b} f(g(x)) g^{\prime}(x) d x=\int_{g(a)}^{g(b)} f(u) d u
$$

The substitution rule - definite integrals

Theorem (Substitution Rule for Definite Integrals)

Suppose g is a differentiable function, g^{\prime} is continuous on $[a, b]$, and f is continuous on the range of g. Then

$$
\int_{a}^{b} f(g(x)) g^{\prime}(x) d x=\int_{g(a)}^{g(b)} f(u) d u .
$$

Example: Evaluate $\int_{-1}^{1} 3 x^{2} \sqrt{x^{3}+1} d x$.

