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Riemann sums

Let f be a continuous function on a closed interval [a, b].
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Riemann sums

Let f be a continuous function on a closed interval [a, b].

Construct a partition P of the interval [a, b] into n
subintervals by choosing n + 1 points x0, x1, . . . , xn between a
and b where a = x0 < x1 < x2 < . . . < xn−1 < xn = b .
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Riemann sums

Let f be a continuous function on a closed interval [a, b].

Construct a partition P of the interval [a, b] into n
subintervals by choosing n + 1 points x0, x1, . . . , xn between a
and b where a = x0 < x1 < x2 < . . . < xn−1 < xn = b .

The k ’th subinterval of P is [xk−1, xk ] and the width of this
subinterval is ∆xk = xk − xk−1.
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Riemann sums

Let f be a continuous function on a closed interval [a, b].

Construct a partition P of the interval [a, b] into n
subintervals by choosing n + 1 points x0, x1, . . . , xn between a
and b where a = x0 < x1 < x2 < . . . < xn−1 < xn = b .

The k ’th subinterval of P is [xk−1, xk ] and the width of this
subinterval is ∆xk = xk − xk−1.

Choose a point ck ∈ [xk−1, xk ].
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Riemann sums

Let f be a continuous function on a closed interval [a, b].

Construct a partition P of the interval [a, b] into n
subintervals by choosing n + 1 points x0, x1, . . . , xn between a
and b where a = x0 < x1 < x2 < . . . < xn−1 < xn = b .

The k ’th subinterval of P is [xk−1, xk ] and the width of this
subinterval is ∆xk = xk − xk−1.

Choose a point ck ∈ [xk−1, xk ].

The sum
∑n

k=1 f (ck)∆xk is called the Riemann sum for f on
[a, b] with respect to the partition P and the choice of the
points ck .
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Riemann sums

Let f be a continuous function on a closed interval [a, b].

Construct a partition P of the interval [a, b] into n
subintervals by choosing n + 1 points x0, x1, . . . , xn between a
and b where a = x0 < x1 < x2 < . . . < xn−1 < xn = b .

The k ’th subinterval of P is [xk−1, xk ] and the width of this
subinterval is ∆xk = xk − xk−1.

Choose a point ck ∈ [xk−1, xk ].

The sum
∑n

k=1 f (ck)∆xk is called the Riemann sum for f on
[a, b] with respect to the partition P and the choice of the
points ck .

The special cases when we choose ck to be the maximum or
minimum value of f on [xk−1, xk ] are called the upper and
lower sums, respectively.
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The indefinite integral

Definition Let f be a function defined on a closed interval [a, b].
A real number J is the definite integral of f over [a, b] if J is the
limit of all possible Riemann sums for f on [a, b] as the width of
the largest subinterval in the partitions goes to zero. If such a
number J exists we write

J =

∫ b

a

f (x)dx

and say that f is integrable over [a, b].
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The indefinite integral

Definition Let f be a function defined on a closed interval [a, b].
A real number J is the definite integral of f over [a, b] if J is the
limit of all possible Riemann sums for f on [a, b] as the width of
the largest subinterval in the partitions goes to zero. If such a
number J exists we write

J =

∫ b

a

f (x)dx

and say that f is integrable over [a, b].

To decide if f is integrable over [a, b] it suffices to show that the
upper sums and the lower sums have the same limit (since all other
Riemann sums are sandwiched between these two sums).
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Existence theorem for definite integrals

Theorem

Suppose that f is a continuous function on a closed interval [a, b].
Then f is integrable over [a, b].
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Existence theorem for definite integrals

Theorem

Suppose that f is a continuous function on a closed interval [a, b].
Then f is integrable over [a, b].

If f is discontinuous then it may not be integrable.
Example:

f (x) =

{

0 if x ∈ Q

1 if x ∈ R \Q
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Rules for definite integrals

Theorem

Suppose that f and g are integrable functions on [a, b]. Then:

(a)
∫ a

b
f (x)dx = −

∫ b

a
f (x)dx (reversing limits of integration);
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Rules for definite integrals

Theorem

Suppose that f and g are integrable functions on [a, b]. Then:

(a)
∫ a

b
f (x)dx = −

∫ b

a
f (x)dx (reversing limits of integration);

(b)
∫ a

a
f (x)dx = 0 (area over a point is zero);
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Rules for definite integrals

Theorem

Suppose that f and g are integrable functions on [a, b]. Then:

(a)
∫ a

b
f (x)dx = −

∫ b

a
f (x)dx (reversing limits of integration);

(b)
∫ a

a
f (x)dx = 0 (area over a point is zero);

(c)
∫ b

a
kf (x)dx = k

∫ b

a
f (x)dx for any constant k ∈ R (area scales

by a constant multiplier);
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Rules for definite integrals

Theorem

Suppose that f and g are integrable functions on [a, b]. Then:

(a)
∫ a

b
f (x)dx = −

∫ b

a
f (x)dx (reversing limits of integration);

(b)
∫ a

a
f (x)dx = 0 (area over a point is zero);

(c)
∫ b

a
kf (x)dx = k

∫ b

a
f (x)dx for any constant k ∈ R (area scales

by a constant multiplier);

(d)
∫ b

a
(f (x) + g(x))dx =

∫ b

a
f (x)dx +

∫ b

a
g(x)dx (areas add);
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Rules for definite integrals

Theorem

Suppose that f and g are integrable functions on [a, b]. Then:

(a)
∫ a

b
f (x)dx = −

∫ b

a
f (x)dx (reversing limits of integration);

(b)
∫ a

a
f (x)dx = 0 (area over a point is zero);

(c)
∫ b

a
kf (x)dx = k

∫ b

a
f (x)dx for any constant k ∈ R (area scales

by a constant multiplier);

(d)
∫ b

a
(f (x) + g(x))dx =

∫ b

a
f (x)dx +

∫ b

a
g(x)dx (areas add);

(e)
∫ b

a
f (x)dx =

∫ c

a
f (x)dx +

∫ b

c
f (x)dx for any c ∈ [a, b] (areas

add);
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Rules for definite integrals

Theorem

Suppose that f and g are integrable functions on [a, b]. Then:

(a)
∫ a

b
f (x)dx = −

∫ b

a
f (x)dx (reversing limits of integration);

(b)
∫ a

a
f (x)dx = 0 (area over a point is zero);

(c)
∫ b

a
kf (x)dx = k

∫ b

a
f (x)dx for any constant k ∈ R (area scales

by a constant multiplier);

(d)
∫ b

a
(f (x) + g(x))dx =

∫ b

a
f (x)dx +

∫ b

a
g(x)dx (areas add);

(e)
∫ b

a
f (x)dx =

∫ c

a
f (x)dx +

∫ b

c
f (x)dx for any c ∈ [a, b] (areas

add);

(f) If m is the absolute minimum of f on [a, b] and M is the
absolute maximum of f on [a, b] then

m(b − a) ≤
∫ b

a
f (x)dx ≤ M(b − a) (max-min inequality);
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Rules for definite integrals

Theorem

Suppose that f and g are integrable functions on [a, b]. Then:

(a)
∫ a

b
f (x)dx = −

∫ b

a
f (x)dx (reversing limits of integration);

(b)
∫ a

a
f (x)dx = 0 (area over a point is zero);

(c)
∫ b

a
kf (x)dx = k

∫ b

a
f (x)dx for any constant k ∈ R (area scales

by a constant multiplier);

(d)
∫ b

a
(f (x) + g(x))dx =

∫ b

a
f (x)dx +

∫ b

a
g(x)dx (areas add);

(e)
∫ b

a
f (x)dx =

∫ c

a
f (x)dx +

∫ b

c
f (x)dx for any c ∈ [a, b] (areas

add);

(f) If m is the absolute minimum of f on [a, b] and M is the
absolute maximum of f on [a, b] then

m(b − a) ≤
∫ b

a
f (x)dx ≤ M(b − a) (max-min inequality);

(g) If f (x) ≤ g(x) for all x ∈ [a, b] then
∫ b

a
f (x)dx ≤

∫ b

a
g(x)dx

(domination).
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The average value of a function
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The average value of a function

Example: f (x) = 1− x2 , x ∈ [0, 1].
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The mean value theorem for definite integrals

Theorem (The mean value theorem for definite integrals)

Suppose f is continuous on [a, b]. Then there is a c ∈ [a, b] with

f (c) =
1

b − a

∫ b

a

f (x)dx = av(f ) .
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The mean value theorem for definite integrals

Theorem (The mean value theorem for definite integrals)

Suppose f is continuous on [a, b]. Then there is a c ∈ [a, b] with

f (c) =
1

b − a

∫ b

a

f (x)dx = av(f ) .

Example: f (x) = 1− x2 , x ∈ [0, 1].
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The mean value theorem for definite integrals

Theorem (The mean value theorem for definite integrals)

Suppose f is continuous on [a, b]. Then there is a c ∈ [a, b] with

f (c) =
1

b − a

∫ b

a

f (x)dx = av(f ) .

Example: f (x) = 1− x2 , x ∈ [0, 1].

Corollary

Suppose f is a continuous function on a closed interval [a, b] with

a 6= b and
∫ b

a
f (x)dx = 0. Then there is a c ∈ [a, b] with f (c) = 0.
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Antiderivatives and definite integrals

Aim: use antiderivatives to calculate definite integrals.
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Antiderivatives and definite integrals

Aim: use antiderivatives to calculate definite integrals.
Given a continuous function f on a closed interval [a, b], define a
new function F by putting

F (x) =

∫ x

a

f (t)dt

for all x ∈ [a, b].
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Antiderivatives and definite integrals

Aim: use antiderivatives to calculate definite integrals.
Given a continuous function f on a closed interval [a, b], define a
new function F by putting

F (x) =

∫ x

a

f (t)dt

for all x ∈ [a, b].

Example f (x) = x on [0, b] for some b > 0.
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Fundamental Theorem of Calculus - Part 1

Part 1 tells us that F (x) =
∫ x

a
f (t)dt is an antiderivative of f .
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Fundamental Theorem of Calculus - Part 1

Part 1 tells us that F (x) =
∫ x

a
f (t)dt is an antiderivative of f .

Theorem (Fundamental Theorem of Calculus - Part 1)

Let f be a continuous function on a closed interval [a, b]. Then
F (x) =

∫ x

a
f (t)dt is continuous on [a, b] and differentiable on

(a, b). Furthermore, the derivative of F (x) is f (x) i.e.

d

dx
F (x) =

d

dx

∫ x

a

f (t)dt = f (x).
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Fundamental Theorem of Calculus - Part 1

Part 1 tells us that F (x) =
∫ x

a
f (t)dt is an antiderivative of f .

Theorem (Fundamental Theorem of Calculus - Part 1)

Let f be a continuous function on a closed interval [a, b]. Then
F (x) =

∫ x

a
f (t)dt is continuous on [a, b] and differentiable on

(a, b). Furthermore, the derivative of F (x) is f (x) i.e.

d

dx
F (x) =

d

dx

∫ x

a

f (t)dt = f (x).

Examples: Find

1

d

dx

∫ x

a

1

1 + 4t3
dt

2

d

dx

∫ x2

2
cos t dt
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Fundamental Theorem of Calculus - Part 2

Part 2 tells us how to use antiderivatives to calculate definite
integrals.
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Fundamental Theorem of Calculus - Part 2

Part 2 tells us how to use antiderivatives to calculate definite
integrals.

Theorem (Fundamental Theorem of Calculus - Part 2)

Let f be a continuous function on a closed interval [a, b] and F be
ANY antiderivative for f . Then

∫ b

a

f (t)dt = F (b)− F (a) .
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Calculating definite integrals

Method to evaluate
∫ b

a
f (x)dx

Step 1 Find an antiderivative F of f .

Step 2 Calculate F (b)− F (a).
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Calculating definite integrals

Method to evaluate
∫ b

a
f (x)dx

Step 1 Find an antiderivative F of f .

Step 2 Calculate F (b)− F (a).

Notation: Let F (b)− F (a) = F (x)|ba .
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Calculating definite integrals

Method to evaluate
∫ b

a
f (x)dx

Step 1 Find an antiderivative F of f .

Step 2 Calculate F (b)− F (a).

Notation: Let F (b)− F (a) = F (x)|ba .
Example: Find

∫ 4

1

(

3

2

√
x − 4

x2

)

dx
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The substitution rule

The substitution rule gives us a technique for calculating certain
integrals.
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The substitution rule

The substitution rule gives us a technique for calculating certain
integrals.

We first consider indefinite integrals. Recall that the indefinite
integral

∫

f (x)dx is the general antiderivative for f (x), and that it
has the form F (x) + C where F ′(x) = f (x) and C is an arbitrary
constant.
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The substitution rule

The substitution rule gives us a technique for calculating certain
integrals.

We first consider indefinite integrals. Recall that the indefinite
integral

∫

f (x)dx is the general antiderivative for f (x), and that it
has the form F (x) + C where F ′(x) = f (x) and C is an arbitrary
constant.

Example Evaluate
∫

2z
3
√
z2 + 5

dz
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The substitution rule - indefinite integrals

Theorem (Substitution Rule for Indefinite Integrals)

Suppose g is a differentiable function and f is continuous function
on the range of g. Let F (x) be an antiderivative for f (x). Then
F (g(x)) is an antiderivative for f (g(x))g ′(x). Equivalently, if we
put u = g(x), then we have

∫

f (g(x))g ′(x)dx =

∫

f (u)du .
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The substitution rule - indefinite integrals

Theorem (Substitution Rule for Indefinite Integrals)

Suppose g is a differentiable function and f is continuous function
on the range of g. Let F (x) be an antiderivative for f (x). Then
F (g(x)) is an antiderivative for f (g(x))g ′(x). Equivalently, if we
put u = g(x), then we have

∫

f (g(x))g ′(x)dx =

∫

f (u)du .

Method for evaluating
∫

f (g(x))g ′(x)dx

1 Substitute u = g(x), du = g ′(x)dx to obtain
∫

f (u)du.
2 Integrate with respect to u.
3 Replace u by g(x).
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The substitution rule - definite integrals

Theorem (Substitution Rule for Definite Integrals)

Suppose g is a differentiable function, g ′ is continuous on [a, b],
and f is continuous on the range of g. Then

∫ b

a

f (g(x))g ′(x)dx =

∫ g(b)

g(a)
f (u)du .
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The substitution rule - definite integrals

Theorem (Substitution Rule for Definite Integrals)

Suppose g is a differentiable function, g ′ is continuous on [a, b],
and f is continuous on the range of g. Then

∫ b

a

f (g(x))g ′(x)dx =

∫ g(b)

g(a)
f (u)du .

Example: Evaluate

∫ 1

−1
3x2

√

x3 + 1dx .
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