MTH4101 Calculus II

Lecture notes for Week 10
Integration V
Thomas' Calculus, Sections 15.8, 15.4 and 15.5

Rainer Klages
School of Mathematical Sciences
Queen Mary, University of London

Spring 2013

Substitution in Double Integrals

For functions of one variable it is often useful to integrate by a change of variable, e.g. $x=$ $x(u)$. The rule is to replace x by $x(u)$ and $\mathrm{d} x$ by $(\mathrm{d} x / \mathrm{d} u) \mathrm{d} u$ and then alter the x-limits to the u-limits. This is integration by substitution, which gives

$$
I=\int_{x=a}^{x=b} f(x) \mathrm{d} x=\int_{u=u_{1}}^{u=u_{2}} f(x(u)) \frac{\mathrm{d} x}{\mathrm{~d} u} \mathrm{~d} u
$$

where u_{1} and u_{2} correspond to the limits a and b such that $a=x\left(u_{1}\right)$ and $b=x\left(u_{2}\right)$.
The above equation follows straightforwardly if $x(u)$ increases with u. If $x(u)$ is a decreasing function of u the u-limits are reversed and therefore we have a change of sign:

$$
I=\int_{x=a}^{x=b} f(x) \mathrm{d} x=-\int_{u=u_{1}}^{u=u_{2}} f(x(u)) \frac{\mathrm{d} x}{\mathrm{~d} u} \mathrm{~d} u
$$

But $\mathrm{d} x / \mathrm{d} u<0$ in this case, so we can combine both cases in one formula:

$$
\int_{x=a}^{x=b} f(x) \mathrm{d} x=\int_{u=u_{1}}^{u=u_{2}} f(x(u))\left|\frac{\mathrm{d} x}{\mathrm{~d} u}\right| \mathrm{d} u .
$$

Note that on the right-hand side of this equation the function $f(x)$ is expressed as $f(x(u))$. Also, the right-hand side of the equation includes a scaling factor $|\mathrm{d} x / \mathrm{d} u|$, multiplying the $\mathrm{d} u$; this comes from transforming from $\mathrm{d} x$ to $\mathrm{d} u$.
For functions of two variables one would similarly expect that the change in variables

$$
x=x(u, v), \quad y=y(u, v)
$$

(for example, for polar coordinates $u=r$ and $v=\theta$) would result in a change in the area by a scaling factor S such that

$$
\mathrm{d} x \mathrm{~d} y=S \mathrm{~d} u \mathrm{~d} v
$$

As an example consider a linear change of coordinates:

$$
x=x(u, v)=a u+b v, \quad y=y(u, v)=c u+d v
$$

or

$$
\binom{x}{y}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{u}{v}
$$

where a, b, c and d are constants.
Let us write \mathbf{M} for the transformation matrix composed of a, b, c and d and recall that a unit square in (u, v) variables has sides

$$
\binom{u}{v}=\binom{1}{0}=\mathbf{e}_{1}, \quad\binom{u}{v}=\binom{0}{1}=\mathbf{e}_{2}
$$

To see what happens to this unit square under the transformation \mathbf{M}, just apply \mathbf{M}. This gives

$$
\begin{aligned}
& \mathbf{M e}_{1}=\mathbf{e}_{1}^{\prime}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{1}{0}=\binom{a}{c} \\
& \mathbf{M e}_{2}=\mathbf{e}_{2}^{\prime}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{0}{1}=\binom{b}{d}
\end{aligned}
$$

where (a, c) and (b, d) represent the coordinates of the new corners in the (x, y) plane:

Therefore, under the transformation \mathbf{M} we find that the unit square in (u, v) based on \mathbf{e}_{1}, \mathbf{e}_{2} is transformed into the parallelogram in (x, y) based on $\mathbf{e}_{1}^{\prime}, \mathbf{e}_{2}^{\prime}$.
Note from the matrix and the diagram that the point $(1,1)$ in (u, v) transforms to the point $(a+b, c+d)$ in (x, y).
Let us calculate the area of the parallelogram P :

We have

$$
\begin{aligned}
\text { Area } P= & {[\text { Total area of rectangle }] } \\
& -\left[\text { Area of } 2 \text { pairs of equal triangles } T_{1} \text { and } T_{2}\right] \\
& -[\text { Area of } 2 \text { rectangles } R] .
\end{aligned}
$$

Therefore,

$$
\text { Area } \begin{aligned}
P & =(a+b)(c+d)-2 \cdot \frac{1}{2} a c-2 \cdot \frac{1}{2} b d-2 b c \\
& =a d-b c=\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\operatorname{det} \mathbf{M}
\end{aligned}
$$

In view of the equation $\mathrm{d} x \mathrm{~d} y=S \mathrm{~d} u \mathrm{~d} v$ one may understand this result such that the unit square of area $\mathrm{d} u \mathrm{~d} v$ gets multiplied by a factor of $S=\operatorname{det} \mathbf{M}$. The same argument shows that a small rectangle of sides $d u$ and $d v$ with area $d u d v$ also gets multiplied by $S=\operatorname{det} \mathbf{M}$. Therefore, for a linear change of variables a small rectangular area $\mathrm{d} u \mathrm{~d} v$ in the (u, v) plane is transformed into the parallelogram area $d x d y=\operatorname{det} \mathbf{M} d u d v$ in the (x, y) plane.

Now let us consider a nonlinear change of coordinates. We take the transformation to have the form

$$
x=x(u, v), \quad y=y(u, v),
$$

where according to the total differential the increments in x and y are given by

$$
\begin{aligned}
d x & =\frac{\partial x}{\partial u} d u+\frac{\partial x}{\partial v} d v \\
d y & =\frac{\partial y}{\partial u} d u+\frac{\partial y}{\partial v} d v
\end{aligned}
$$

or, in matrix form,

$$
\binom{d x}{d y}=\left(\begin{array}{ll}
\partial x / \partial u & \partial x / \partial v \\
\partial y / \partial u & \partial y / \partial v
\end{array}\right)\binom{d u}{d v} .
$$

The Jacobian matrix is defined to be

$$
\mathbf{M}(u, v)=\left(\begin{array}{ll}
\partial x / \partial u & \partial x / \partial v \\
\partial y / \partial u & \partial y / \partial v
\end{array}\right)
$$

and the Jacobian determinant, or Jacobian,

$$
\frac{\partial(x, y)}{\partial(u, v)}=\operatorname{det} \mathbf{M}(u, v)
$$

This suggests that for a nonlinear change of variables we also have that a rectangular area $\mathrm{d} u \mathrm{~d} v$ in the (u, v) plane) is transformed into the (deformed) 'parallelogram' area $\operatorname{det} \mathbf{M} d u d v$ in the (x, y) plane.

Therefore, the required formula for double integrals under a change of variables is:

$$
\iint_{R} f(x, y) \mathrm{d} x \mathrm{~d} y=\iint_{R^{\prime}} f(x(u, v), y(u, v))\left|\frac{\partial(x, y)}{\partial(u, v)}\right| \mathrm{d} u \mathrm{~d} v
$$

where

$$
\left|\frac{\partial(x, y)}{\partial(u, v)}\right|=|\operatorname{det} \mathbf{M}|
$$

can be thought of as the scaling factor S.

Note that $|\cdot|$ denotes the absolute value of the determinant of the matrix, i.e., the modulus as in the one variable case. This may not be confused with the case of a matrix, where vertical lines on either side denote the determinant. For example, if we let

$$
\mathbf{A}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

then

$$
\operatorname{det} \mathbf{A}=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c
$$

and

$$
|\operatorname{det} \mathbf{A}|=|a d-b c|
$$

Example:

Evaluate the integral

$$
I=\iint_{R}\left(x^{2}+y^{2}\right) \mathrm{d} x \mathrm{~d} y
$$

where R is a circle $x^{2}+y^{2} \leq a^{2}$, by changing to polar coordinates.
In polar coordinates we have

$$
x=r \cos \theta, \quad y=r \sin \theta .
$$

Therefore, taking $u=r$ and $v=\theta$, we can write the Jacobian matrix as

$$
\mathbf{M}=\left(\begin{array}{ll}
\partial x / \partial r & \partial x / \partial \theta \\
\partial y / \partial r & \partial y / \partial \theta
\end{array}\right)=\left(\begin{array}{cc}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right)
$$

and the Jacobian determinant is

$$
\operatorname{det} \mathbf{M}=\frac{\partial(x, y)}{\partial(r, \theta)}=\left|\begin{array}{cc}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right|=r\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=r
$$

where here and in the following we assume $r \geq 0$, so we do not need to take the absolute value. The original area R and the transformed area R^{\prime} are shown below:

(b)

Note that the circle in the (x, y) plane transforms into a rectangle in the (r, θ) plane. Here R is the region given by $x^{2}+y^{2} \leq a^{2}$ and R^{\prime} is the region given by $0 \leq r \leq a, 0 \leq \theta \leq 2 \pi$.

Therefore

$$
I=\iint_{R}\left(x^{2}+y^{2}\right) \mathrm{d} x \mathrm{~d} y=\iint_{R^{\prime}}\left(r^{2}\right)(r) \mathrm{d} r \mathrm{~d} \theta
$$

where the r^{2} on the right-hand integral comes from the transformed $x^{2}+y^{2}$ and the $r \mathrm{~d} r \mathrm{~d} \theta$ is from the transformed $\mathrm{d} x \mathrm{~d} y$ with r coming from the Jacobian determinant det \mathbf{M}. Hence

$$
I=\int_{r=0}^{r=a} \int_{\theta=0}^{\theta=2 \pi} r^{3} \mathrm{~d} \theta \mathrm{~d} r=\left(\int_{r=0}^{r=a} r^{3} \mathrm{~d} r\right)\left(\int_{\theta=0}^{\theta=2 \pi} \mathrm{~d} \theta\right)=\frac{\pi a^{4}}{2}
$$

where we note that the integral is separable.

Example:

Evaluate the double integral

$$
\int_{0}^{4} \int_{x=y / 2}^{x=y / 2+1} \frac{2 x-y}{2} \mathrm{~d} x \mathrm{~d} y
$$

by applying the transformation $u=(2 x-y) / 2, v=y / 2$ and integrating over an appropriate region of the $u-v$ plane.
The region R in the x - y-plane looks as follows:

The corresponding region G in the $u-v$ plane can be obtained by first writing x and y in terms of u and v as $x=u+v$ and $y=2 v$.
The boundaries of G are then found by substituting these equations for the boundaries of R :

$\boldsymbol{x} \boldsymbol{y}$-equations for the boundary of \boldsymbol{R}	Corresponding $\boldsymbol{u} \boldsymbol{v}$-equations for the boundary of \boldsymbol{G}	Simplified $\boldsymbol{u} \boldsymbol{v}$-equations
$x=y / 2$	$u+\boldsymbol{v}=2 \boldsymbol{v} / 2=\boldsymbol{v}$	
$x=(y / 2)+1$	$u+\boldsymbol{v}=(2 \boldsymbol{v} / 2)+1=\boldsymbol{v}+1$	$u=1$
$y=0$	$2 \boldsymbol{v}=0$	$\boldsymbol{v}=0$
$y=4$	$2 \boldsymbol{v}=4$	$\boldsymbol{v}=2$

The Jacobian of the transformation is

$$
\begin{aligned}
\operatorname{det} \mathbf{M}(u, v) & =\left|\frac{\partial(x, y)}{\partial(u, v)}\right|=\left|\begin{array}{cc}
\partial x / \partial u & \partial x / \partial v \\
\partial y / \partial u & \partial y / \partial v
\end{array}\right| \\
& =\left|\begin{array}{cc}
\partial(u+v) / \partial u & \partial(u+v) / \partial v \\
\partial(2 v) / \partial u & \partial(2 v) / \partial v
\end{array}\right|=\left|\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right|=2 .
\end{aligned}
$$

and we get

$$
\int_{0}^{4} \int_{x=y / 2}^{x=(y / 2)+1} \frac{2 x-y}{2} \mathrm{~d} x \mathrm{~d} y=\int_{v=0}^{v=2} \int_{u=0}^{u=1} u|\operatorname{det} \mathbf{M}(u, v)| \mathrm{d} u \mathrm{~d} v=\int_{v=0}^{v=2} \int_{u=0}^{u=1} u \cdot 2 \mathrm{~d} u \mathrm{~d} v=2
$$

Note that for invertible transformations

$$
\begin{equation*}
\frac{\partial(x, y)}{\partial(u, v)}=\left(\frac{\partial(u, v)}{\partial(x, y)}\right)^{-1} \tag{1}
\end{equation*}
$$

as you have seen in Calculus 1 for a function of one variable. This can be useful in solving some problems.

Example:

Evaluate the integral

$$
I=\iint_{R} 1 \cdot \mathrm{~d} x \mathrm{~d} y
$$

(i.e. the area of the region R) where R is enclosed by $y^{2}=x, y^{2}=2 x, x y=1$ and $x y=2$.

To solve the integral consider the change of variables defined by

$$
u=y^{2} / x, \quad v=x y .
$$

Then we can write the four bounding curves as

$$
y^{2}=x \Leftrightarrow u=1, \quad y^{2}=2 x \Leftrightarrow u=2, \quad x y=1 \Leftrightarrow v=1, \quad x y=2 \Leftrightarrow v=2 .
$$

So the region becomes a square (the region R^{\prime} in part (b) of the above figure).
Now, for the Jacobian determinant it is easier to use Eq. (1) above. So, to calculate $\partial(x, y) / \partial(u, v)$ we first calculate $\partial(u, v) / \partial(x, y)$ and then take the inverse. Using $u=y^{2} / x$ and $v=x y$ we have

$$
\frac{\partial(u, v)}{\partial(x, y)}=\left|\begin{array}{ll}
\partial u / \partial x & \partial u / \partial y \\
\partial v / \partial x & \partial v / \partial y
\end{array}\right|=\left|\begin{array}{cc}
-y^{2} / x^{2} & 2 y / x \\
y & x
\end{array}\right|=-3 \frac{y^{2}}{x}=-3 u .
$$

Therefore, using Eq. (1),

$$
\frac{\partial(x, y)}{\partial(u, v)}=\left(\frac{\partial(u, v)}{\partial(x, y)}\right)^{-1}=-\frac{1}{3 u}
$$

Hence

$$
\begin{aligned}
I & =\iint_{R} 1 \cdot \mathrm{~d} x \mathrm{~d} y=\iint_{R^{\prime}} 1 \cdot\left|\frac{\partial(x, y)}{\partial(u, v)}\right| \mathrm{d} u \mathrm{~d} v \\
& =\iint_{R^{\prime}}\left|-\frac{1}{3 u}\right| \mathrm{d} u \mathrm{~d} v=\frac{1}{3} \int_{u=1}^{u=2} \int_{v=1}^{v=2} \frac{1}{u} \mathrm{~d} v \mathrm{~d} u \\
& =\frac{1}{3} \int_{u=1}^{u=2}\left[\frac{v}{u}\right]_{v=1}^{v=2} \mathrm{~d} u \\
& =\frac{1}{3} \int_{u=1}^{u=2} \frac{1}{u} \mathrm{~d} u=\frac{1}{3}[\ln u]_{u=1}^{u=2}=\frac{\ln 2}{3}
\end{aligned}
$$

Reading assignment: Work yourself through the following example.

Example:

Evaluate the integral

$$
\int_{-\infty}^{\infty} e^{-x^{2} / 2} \mathrm{~d} x
$$

If we call this integral I, we can write

$$
I^{2}=\left(\int_{-\infty}^{\infty} e^{-x^{2} / 2} \mathrm{~d} x\right)\left(\int_{-\infty}^{\infty} e^{-y^{2} / 2} \mathrm{~d} y\right)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\left(x^{2}+y^{2}\right) / 2} \mathrm{~d} x \mathrm{~d} y
$$

Now transform to polar coordinates with the limits $0 \leq r<\infty$ and $-\pi \leq \theta \leq \pi$. This gives

$$
\begin{aligned}
I^{2} & =\int_{-\pi}^{\pi} \int_{0}^{\infty} e^{-r^{2} / 2}\left|\frac{\partial(x, y)}{\partial(r, \theta)}\right| \mathrm{d} r \mathrm{~d} \theta=\int_{-\pi}^{\pi} \int_{0}^{\infty} r e^{-r^{2} / 2} \mathrm{~d} r \mathrm{~d} \theta \\
& =\int_{-\pi}^{\pi}\left[-e^{-r^{2} / 2}\right]_{0}^{\infty} \mathrm{d} \theta=\int_{-\pi}^{\pi}((0)-(-1)) \mathrm{d} \theta=\int_{-\pi}^{\pi} \mathrm{d} \theta=2 \pi
\end{aligned}
$$

Hence $I=\sqrt{2 \pi}$.
Note that the probability density function for a normal (or Gaussian) distribution is

$$
\varphi(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-\mu)^{2} /\left(2 \sigma^{2}\right)}
$$

for mean μ and standard deviation σ. If we write $t=(x-\mu) / \sigma$ (i.e. express the displacement from the mean in terms of the standard deviation) then the total probability is

$$
\begin{aligned}
P & =\frac{1}{\sigma \sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-(x-\mu)^{2} /\left(2 \sigma^{2}\right)} \mathrm{d} x=\frac{1}{\sigma \sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-t^{2} / 2} \sigma \mathrm{~d} t \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-t^{2} / 2} \mathrm{~d} t=1 . \quad \text { (by our previous result) }
\end{aligned}
$$

