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Functions of Several Variables

Reminder: What is a function?
In Calculus 1 and in Mathematical Structures you have learned the following:

Definition

A function from a set D (domain) to a set Y (codomain) is a rule that assigns a unique

(single) element y ∈ Y to each element x ∈ D.

So far you have dealt with functions of a single variable, such as

f : R → R , x 7→ y = f(x)

with, for example, f(x) = x2.
Functions of several variables are defined in complete analogy to functions of one variable
in terms of uniqueness, domain, codomain, range, etc. (without involving complex numbers):

In the following we will focus on functions of two variables.

Examples:

V = V (r, h) = πr2h (volume of cylinder, radius r, height h)

M = M(r, ρ) =
4

3
πr3ρ (mass of sphere, radius r, density ρ)

In the case of V the quantities r and h are the input (independent) variables and V is the
unique output (dependent) variable.

If f is a function of two independent variables, x and y, the domain of f is a region in the
x-y plane.
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Example:

(Natural) domains and ranges for function of two variables

Interior points, boundary points, open and closed sets are defined in higher dimensions in
analogy to dealing with intervals on the real line.1

Example:

Describe the domain of the function f(x, y) =
√

y − x2.
Since f is defined only where y − x2 ≥ 0, the domain is the closed (the set contains all
boundary points), unbounded (why?) region shown below (shaded). The parabola y = x2 is
the boundary of the domain. The points above the parabola make up the domain’s interior.

There are two ways to visualise a function f(x, y):

1. Sketch the graph, or surface z = f(x, y) in space.

2. Draw and label level curves in the domain on which f has a constant value.

As an example for 1., we will consider the function

f(x, y) = x2 + y2 .

To visualise the surface, consider the nature of f for a fixed value of y, say y = a. In this
case z = x2 + a2 and z = z(x). The equation z = x2 + a2 defines a parabola in the plane
y = a, perpendicular to the y-axis. Each different value of a gives a different parabola.
For example, for y = a = 0 we have z = x2. Therefore the required surface is made up of
parabolas and forms a paraboloid as shown below.

1If you are not satisfied with this statement, please check out Thomas’ Calculus p.749 for details.
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Examples of other surfaces are shown in the following figure. It displays the three dimen-
sional surfaces defined by the functions (a) f(x, y) = x2 + y2, (b) f(x, y) = −x2 − y2, (c)
f(x, y) = x2 + y2 + 5 and (d) f(x, y) = y2 − x2.

(a) (b)

(c) (d)
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The set of points in the x-y plane where a function f(x, y) has a constant value f(x, y) = c
is called a level curve of f (cf. what is plotted in geographic maps).

Example:

Graph the function f(x, y) = 100−x2−y2 and plot the level curves f(x, y) = 0, f(x, y) = 51
and f(x, y) = 75 in the domain of f in the plane.

The domain is the entire x-y plane and the range is the set of real numbers ≤ 100. The
graph is the paraboloid given by z = 100 − x2 − y2:

When f(x, y) = 0, we have 100− x2 − y2 = 0 or x2 + y2 = 100. This corresponds to a circle
of radius 10.

When f(x, y) = 51, we have 100 − x2 − y2 = 51 or x2 + y2 = 49. This corresponds to a
circle of radius 7.

When f(x, y) = 75, we have 100 − x2 − y2 = 75 or x2 + y2 = 25. This corresponds to a
circle of radius 5.

The curve in space in which the plane z = c cuts a surface z = f(x, y) is called the contour

curve f(x, y) = c. The following figure shows the contour curve produced where the plane
z = 75 intersects the surface z = f(x, y) = 100 − x2 − y2.
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Limits and Continuity in Higher Dimensions

Reminder: Limits
For functions of one variable we say that f(x) approaches the limit L whenever f(x) is
arbitrarily close to L for all x sufficiently close to a, written as

lim
x→a

f(x) = L .

Example:

lim
x→4

(2x − 1) = 7.
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Analogously, if the values of f(x, y) lie arbitrarily close to a fixed real number L for all
points (x, y) sufficiently close to a point (x0, y0), we say that f approaches the limit L as
(x, y) approaches (x0, y0). More rigorously:2

It can be shown that this definition leads to the following properties (you have seen an
analogous theorem for functions of one variable in Calculus 1):

Theorem Properties of limits of functions of two variables

If L,M, k ∈ R, lim
(x,y)→(x0,y0)

f(x, y) = L and lim
(x,y)→(x0,y0)

g(x, y) = M then

1. lim
(x,y)→(x0,y0)

(f(x, y) ± g(x, y)) = L ± M

2. lim
(x,y)→(x0,y0)

(f(x, y) · g(x, y)) = L · M

3. lim
(x,y)→(x0,y0)

(kf(x, y)) = kL

4. lim
(x,y)→(x0,y0)

f(x, y)

g(x, y)
=

L

M
, M 6= 0

5. If r and s are integers with no common factors, and s 6= 0, then

lim
(x,y)→(x0,y0)

(f(x, y))r/s = Lr/s provided Lr/s is a real number.

For polynomials and rational functions the limit as (x, y) → (x0, y0) can be calculated by
evaluating the function at (x0, y0) (provided the rational function is defined at (x0, y0)).

Examples:

(1)

lim
(x,y)→(0,1)

x − xy + 3

x2y + 5xy − y3
=

0 − (0)(1) + 3

(0)2(1) + 5(0)(1) − (1)3
= −3 .

(2) Find

lim
(x,y)→(0,0),x 6=y

x2 − xy√
x −√

y
.

2see footnote 2 on p.8 of the week 3 lecture notes of Calculus 1 - you need to have read Thomas’ Calculus

Section 2.3 to fully appreciate this definition!
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We need to avoid the whole path to the limit where x = y, hence the condition x 6= y.
Accordingly, there is a problem with just setting x = y = 0 because

√
x − √

y → 0 as
(x, y) → (0, 0). However, we can write

lim
(x,y)→(0,0),x 6=y

x2 − xy√
x −√

y
= lim

(x,y)→(0,0),x 6=y

x2 − xy√
x −√

y
·
√

x +
√

y√
x +

√
y

= lim
(x,y)→(0,0),x 6=y

x(x − y)(
√

x +
√

y)

(x − y)

= lim
(x,y)→(0,0),x 6=y

x(
√

x +
√

y) = 0 .

Now we use limits to define continuity for a function of two variables.

Reminder: Continuity

For functions of one variable f(x) is continuous at x = a whenever f(a) is defined,
limx→a f(x) exists and the limit L equals f(a), that is, limx→a f(x) = f(a). Analogously:

It follows from the previous Theorem that polynomials and rational functions of two vari-
ables are continuous on their domains.

Recall that for functions of one variable both the left- and the right-sided limits had to have
the same value for a limit to exist at a point. For functions of two (or more) variables, this
translates into the Two-Path Test for Nonexistence of a Limit: It states that if a
function f(x, y) has different limits along two different paths as (x, y) → (x0, y0), then

lim
(x,y)→(x0,y0)

f(x, y)

does not exist.

The following figure illustrates this concept for paths approaching a point in radial and
tangential directions:
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(a) (b)

To have a limit at a point we have to have the same limit as the point is approached from
all directions, including (a) radial directions and (b) tangential directions.

Example:

Show that the function

f(x, y) =
2x2y

x4 + y2

has no limit as (x, y) → (0, 0).

We cannot use substitution as it leads to 0/0. However, we can consider what happens as
we approach (0, 0) along a family of different curves. Remember, the choice of curves is
up to us as the Two-Path Test does not specify what the path should be. You may wish
to check, as an exercise, what happens for the family of paths y = mx as (x, y) → (0, 0).
Here we consider the next more complicated case, which is the family of parabolas given by
y = kx2 (x 6= 0). Along these curves the function is

f(x, y)|y=kx2 =
2x2y

x4 + y2

∣

∣

∣

∣

y=kx2

=
2x2(kx2)

x4 + (kx2)2
=

2kx4

x4 + k2x4
=

2k

1 + k2
.

Therefore, as we approach (0, 0) along any curve y = kx2, we have

lim
(x,y)→(0,0)

[

f(x, y)|y=kx2

]

=
2k

1 + k2
.

Consequently, the actual limit depends on which path of approach we take (i.e. which
parabola we are on which is determined by the value of k). By the Two-Path Test there
is hence no limit as (x, y) → (0, 0). This is illustrated by looking at the surface of this
function:
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