MTH4100 Calculus I

Bill Jackson
School of Mathematical Sciences QMUL

Semester 1, 2012

What is Calculus?

Calculus is the branch of mathematics which uses limits, derivatives and integrals to 'measure change'. It is based on the real numbers and the study of functions of real variables:

- for one variable see Calculus I
- for several variables see Calculus II

What is Calculus?

Calculus is the branch of mathematics which uses limits, derivatives and integrals to 'measure change'. It is based on the real numbers and the study of functions of real variables:

- for one variable see Calculus I
- for several variables see Calculus II

Calculus provides powerful techniques for solving problems which have widespread applications throughout science, economics, and engineering. It has been formalised and extended into the important branch of mathematics known as analysis.

Real numbers and the real line

We can think of the real numbers as the set of all infinite decimals. We denote this set by \mathbb{R}.

Real numbers and the real line

We can think of the real numbers as the set of all infinite decimals. We denote this set by \mathbb{R}.
examples: $2=2.000 \ldots-\frac{3}{4}=-0.7500 \ldots \frac{1}{3}=0.333 \ldots$
$\sqrt{2}=1.4142 \ldots \pi=3.1415 \ldots$

Real numbers and the real line

We can think of the real numbers as the set of all infinite decimals. We denote this set by \mathbb{R}.
examples: $2=2.000 \ldots-\frac{3}{4}=-0.7500 \ldots \frac{1}{3}=0.333 \ldots$
$\sqrt{2}=1.4142 \ldots \pi=3.1415 \ldots$
The real numbers can be represented as points on the real line.

Properties of the real numbers

The real numbers have three types of fundamental properties:

Properties of the real numbers

The real numbers have three types of fundamental properties:
algebraic: the rules of calculation (addition, subtraction, multiplication, division).
Example: $2(3+5)=2 \cdot 3+2 \cdot 5=6+10=16$

The real numbers have three types of fundamental properties:
algebraic: the rules of calculation (addition, subtraction, multiplication, division).
Example: $2(3+5)=2 \cdot 3+2 \cdot 5=6+10=16$
order: inequalities relating any two real numbers (for a geometric picture imagine the order in which points occur on the real line). Example: $-\frac{3}{4}<\frac{1}{3}, \quad \sqrt{2} \leq \pi$

The real numbers have three types of fundamental properties:
algebraic: the rules of calculation (addition, subtraction, multiplication, division).
Example: $2(3+5)=2 \cdot 3+2 \cdot 5=6+10=16$
order: inequalities relating any two real numbers (for a geometric picture imagine the order in which points occur on the real line). Example: $-\frac{3}{4}<\frac{1}{3}, \quad \sqrt{2} \leq \pi$
completeness: "there are no gaps on the real line"

Algebraic properties - Addition

The first five algebraic properties involve addition:

Algebraic properties - Addition

The first five algebraic properties involve addition:
(A0) For all $a, b \in \mathbb{R}$ we have $a+b \in \mathbb{R}$. closure

Algebraic properties - Addition

The first five algebraic properties involve addition:
(A0) For all $a, b \in \mathbb{R}$ we have $a+b \in \mathbb{R}$. closure
(A1) For all $a, b, c \in \mathbb{R}$ we have $a+(b+c)=(a+b)+c$. associativity

Algebraic properties - Addition

The first five algebraic properties involve addition:
(A0) For all $a, b \in \mathbb{R}$ we have $a+b \in \mathbb{R}$. closure
(A1) For all $a, b, c \in \mathbb{R}$ we have $a+(b+c)=(a+b)+c$. associativity
(A2) For all $a, b \in \mathbb{R}$ we have $a+b=b+a$. commutativity

Algebraic properties - Addition

The first five algebraic properties involve addition:
(A0) For all $a, b \in \mathbb{R}$ we have $a+b \in \mathbb{R}$. closure
(A1) For all $a, b, c \in \mathbb{R}$ we have $a+(b+c)=(a+b)+c$. associativity
(A2) For all $a, b \in \mathbb{R}$ we have $a+b=b+a$. commutativity
(A3) There is an element $0 \in \mathbb{R}$ such that $a+0=a$ for all $a \in \mathbb{R}$. identity

Algebraic properties - Addition

The first five algebraic properties involve addition:
(A0) For all $a, b \in \mathbb{R}$ we have $a+b \in \mathbb{R}$. closure
(A1) For all $a, b, c \in \mathbb{R}$ we have $a+(b+c)=(a+b)+c$. associativity
(A2) For all $a, b \in \mathbb{R}$ we have $a+b=b+a$. commutativity
(A3) There is an element $0 \in \mathbb{R}$ such that $a+0=a$ for all $a \in \mathbb{R}$. identity
(A4) For all $a \in \mathbb{R}$ there is an element $-a \in \mathbb{R}$ such that $a+(-a)=0$. inverse

Algebraic properties - Multiplication

There are five analogous algebraic properties for multiplication:

Algebraic properties - Multiplication

There are five analogous algebraic properties for multiplication:
(M0) For all $a, b \in \mathbb{R}$ we have $a b \in \mathbb{R}$. closure

Algebraic properties - Multiplication

There are five analogous algebraic properties for multiplication:
(M0) For all $a, b \in \mathbb{R}$ we have $a b \in \mathbb{R}$. closure
(M1) For all $a, b, c \in \mathbb{R}$ we have $a(b c)=(a b) c$. associativity

Algebraic properties - Multiplication

There are five analogous algebraic properties for multiplication:
(M0) For all $a, b \in \mathbb{R}$ we have $a b \in \mathbb{R}$. closure
(M1) For all $a, b, c \in \mathbb{R}$ we have $a(b c)=(a b) c$. associativity
(M2) For all $a, b \in \mathbb{R}$ we have $a b=b a$. commutativity

Algebraic properties - Multiplication

There are five analogous algebraic properties for multiplication:
(M0) For all $a, b \in \mathbb{R}$ we have $a b \in \mathbb{R}$. closure
(M1) For all $a, b, c \in \mathbb{R}$ we have $a(b c)=(a b) c$. associativity
(M2) For all $a, b \in \mathbb{R}$ we have $a b=b a$. commutativity
(M3) There is an element $1 \in \mathbb{R}$ such that $a 1=a$ for all $a \in \mathbb{R}$. identity

Algebraic properties - Multiplication

There are five analogous algebraic properties for multiplication:
(M0) For all $a, b \in \mathbb{R}$ we have $a b \in \mathbb{R}$. closure
(M1) For all $a, b, c \in \mathbb{R}$ we have $a(b c)=(a b) c$. associativity
(M2) For all $a, b \in \mathbb{R}$ we have $a b=b a$. commutativity
(M3) There is an element $1 \in \mathbb{R}$ such that $a 1=a$ for all $a \in \mathbb{R}$. identity
(M4) For all $a \in \mathbb{R}$ with $a \neq 0$, there is an element $a^{-1} \in \mathbb{R}$ such that $a a^{-1}=1 . \quad$ inverse

Algebraic properties - Distributivity

One last algebraic properties links addition and multiplication:

Algebraic properties - Distributivity

One last algebraic properties links addition and multiplication:
(D) For all $a, b, c \in \mathbb{R}$ we have $a(b+c)=a b+a c$. distributivity

Algebraic properties - Distributivity

One last algebraic properties links addition and multiplication:
(D) For all $a, b, c \in \mathbb{R}$ we have $a(b+c)=a b+a c$. distributivity Properties A0-A5, M0-M5, and D define an algebraic structure called a field.

Order properties

For all $a, b, c \in \mathbb{R}$ we have:

Order properties

For all $a, b, c \in \mathbb{R}$ we have:
(O1) either $a \leq b$ or $b \leq a \quad$ totality of ordering I

Order properties

For all $a, b, c \in \mathbb{R}$ we have:
(O1) either $a \leq b$ or $b \leq a \quad$ totality of ordering I
(O2) if $a \leq b$ and $b \leq a$ then $a=b$ totality of ordering I/

Order properties

For all $a, b, c \in \mathbb{R}$ we have:
(O1) either $a \leq b$ or $b \leq a \quad$ totality of ordering I
(O2) if $a \leq b$ and $b \leq a$ then $a=b$ totality of ordering I/
(O3) if $a \leq b$ and $b \leq c$ then $a \leq c$ transitivity

Order properties

For all $a, b, c \in \mathbb{R}$ we have:
(O1) either $a \leq b$ or $b \leq a \quad$ totality of ordering I
(O2) if $a \leq b$ and $b \leq a$ then $a=b$ totality of ordering I/
(O3) if $a \leq b$ and $b \leq c$ then $a \leq c$ transitivity
(O4) if $a \leq b$ then $a+c \leq b+c$ order under addition

Order properties

For all $a, b, c \in \mathbb{R}$ we have:
(O1) either $a \leq b$ or $b \leq a \quad$ totality of ordering I
(O2) if $a \leq b$ and $b \leq a$ then $a=b$ totality of ordering I/
(O3) if $a \leq b$ and $b \leq c$ then $a \leq c$ transitivity
(O4) if $a \leq b$ then $a+c \leq b+c$ order under addition
(O5) if $a \leq b$ and $0 \leq c$ then $a c \leq b c$ order under multiplication

Other rules for working with inequalities

The order properties O1-O5 have many consequences:

Other rules for working with inequalities

The order properties O1-O5 have many consequences:

Rules for Inequalities

If a, b, and c are real numbers, then:

1. $a<b \Rightarrow a+c<b+c$
2. $a<b \Rightarrow a-c<b-c$
3. $a<b$ and $c>0 \Rightarrow a c<b c$
4. $a<b$ and $c<0 \Rightarrow b c<a c$

Special case: $a<b \Rightarrow-b<-a$
5. $a>0 \Rightarrow \frac{1}{a}>0$
6. If a and b are both positive or both negative, then $a<b \Rightarrow \frac{1}{b}<\frac{1}{a}$

Other rules for working with inequalities

The order properties O1-O5 have many consequences:

Rules for Inequalities

If a, b, and c are real numbers, then:

1. $a<b \Rightarrow a+c<b+c$
2. $a<b \Rightarrow a-c<b-c$
3. $a<b$ and $c>0 \Rightarrow a c<b c$
4. $\quad a<b$ and $c<0 \Rightarrow b c<a c$

Special case: $a<b \Rightarrow-b<-a$
5. $a>0 \Rightarrow \frac{1}{a}>0$
6. If a and b are both positive or both negative, then $a<b \Rightarrow \frac{1}{b}<\frac{1}{a}$

We can prove that these rules are valid by using properties O1-O5.

Intuitively this means "there are no gaps in the real numbers". More precisely it says:

Intuitively this means "there are no gaps in the real numbers". More precisely it says:

If a set of real numbers S has an upper bound i.e. there exists a number $c \in \mathbb{R}$ such that $x \leq c$ for all $x \in S$, then S has a least upper bound i.e. there exists an upper bound c_{0} for S such that $c \geq c_{0}$ for all upper bounds c of S.

Intervals

Definition An interval is a subset $/$ of \mathbb{R} of one of the following two types:

Intervals

Definition An interval is a subset $/$ of \mathbb{R} of one of the following two types:
(a) all real numbers which lie between two given real numbers;

Intervals

Definition An interval is a subset $/$ of \mathbb{R} of one of the following two types:
(a) all real numbers which lie between two given real numbers;
(b) all real numbers which are either above or below a given real number.

Intervals

Definition An interval is a subset $/$ of \mathbb{R} of one of the following two types:
(a) all real numbers which lie between two given real numbers;
(b) all real numbers which are either above or below a given real number.
Type (a) intervals are said to be bounded (or finite). Type (b) intervals are said to be unbounded (or infinite).

Intervals

Definition An interval is a subset $/$ of \mathbb{R} of one of the following two types:
(a) all real numbers which lie between two given real numbers;
(b) all real numbers which are either above or below a given real number.
Type (a) intervals are said to be bounded (or finite). Type (b) intervals are said to be unbounded (or infinite).

The completeness property tells us that an interval which is bounded above has a least upper bound. Similarly an interval which is bounded below has a greatest lower bound. We refer to these values as end-points of the interval.

Examples

- $I=\{x \in \mathbb{R}: 3<x \leq 6\}$ defines a bounded interval. Geometrically, it corresponds to a line segment on the real line. It has two end-points 3 and 6 . We can describe it using the notation $I=(3,6]$, where the round bracket on the left tells us that $3 \notin I$ and the square bracket on the right tells us that $6 \in I$.

Examples

- $I=\{x \in \mathbb{R}: 3<x \leq 6\}$ defines a bounded interval. Geometrically, it corresponds to a line segment on the real line. It has two end-points 3 and 6 . We can describe it using the notation $I=(3,6]$, where the round bracket on the left tells us that $3 \notin I$ and the square bracket on the right tells us that $6 \in I$.
- $I=\{x \in \mathbb{R}: x>-2\}$ defines an unbounded interval.

Geometrically, it corresponds to a ray i.e. a line which extends to infinity in one direction. It has one end-point -2 . We can describe it using the notation $I=(-2, \infty)$.

Open and Closed intervals

We can distinguish between intervals which are bounded or unbounded. We can also distinguish between intervals by considering whether or not they contain their end points: intervals which contain all their end-points are closed; intervals which contain none of their end-points are open; intervals which have two end points and contain exactly one of them are half-open (or half-closed).

Types of intervals

TABLE 1.1 Types of intervals

Notation	Set description	Type		Picture
(a, b)	$\{x \mid a<x<b\}$	Open	a	b
[a, b]	$\{x \mid a \leq x \leq b\}$	Closed	a	b
$[a, b)$	$\{x \mid a \leq x<b\}$	Half-open	a	b
(a, b]	$\{x \mid a<x \leq b\}$	Half-open	a	b
(a, ∞)	$\{x \mid x>a\}$	Open	a	
$[a, \infty)$	$\{x \mid x \geq a\}$	Closed	a	
$(-\infty, b)$	$\{x \mid x<b\}$	Open		b
$(-\infty, b]$	$\{x \mid x \leq b\}$	Closed		b
$(-\infty, \infty)$	\mathbb{R} (set of all real numbers)	Both open and closed		

Solving inequalities

We can represent the set of all solutions to one or more inequalities as an interval or, more generally, as a collection of disjoint intervals.
Examples: Find the set of all solutions to the following inequalities.

Solving inequalities

We can represent the set of all solutions to one or more inequalities as an interval or, more generally, as a collection of disjoint intervals.
Examples: Find the set of all solutions to the following inequalities.

- $2 x-1<x+3$. Using the properties of order we have $2 x<x+4$ and hence $x<4$. Thus the set of solutions is the interval $(-\infty, 4)$.

Solving inequalities

We can represent the set of all solutions to one or more inequalities as an interval or, more generally, as a collection of disjoint intervals.
Examples: Find the set of all solutions to the following inequalities.

- $2 x-1<x+3$. Using the properties of order we have $2 x<x+4$ and hence $x<4$. Thus the set of solutions is the interval $(-\infty, 4)$.
- $\frac{6}{x-1} \geq 5$. Since $\frac{6}{x-1}>0$ we have $x-1>0$ and hence $x>1$. We can now use property (O5) to deduce that $6 \geq 5 x-5$ and hence $\frac{11}{5} \geq x$. Combining these two inequalities we see that the set of solutions is the interval $\left(1, \frac{11}{5}\right]$.

Solving inequalities

We can represent the set of all solutions to one or more inequalities as an interval or, more generally, as a collection of disjoint intervals.
Examples: Find the set of all solutions to the following inequalities.

- $2 x-1<x+3$. Using the properties of order we have $2 x<x+4$ and hence $x<4$. Thus the set of solutions is the interval $(-\infty, 4)$.
- $\frac{6}{x-1} \geq 5$. Since $\frac{6}{x-1}>0$ we have $x-1>0$ and hence $x>1$. We can now use property (O5) to deduce that $6 \geq 5 x-5$ and hence $\frac{11}{5} \geq x$. Combining these two inequalities we see that the set of solutions is the interval $\left(1, \frac{11}{5}\right]$.
- $x^{2}-2 x-1>2$. Then $x^{2}-2 x-3>0$ so $(x+1)(x-3)>0$. Hence either $(x+1)$ and $(x-3)$ are both positive i.e. $x>3$, or $(x+1)$ and $(x-3)$ are both negative i.e. $x<-1$. Thus the set of solutions is union of the two disjoint intervals $(-\infty,-1)$ and $(3, \infty)$.

Absolute Value

Definition The absolute value (or modulus) of a real number x is defined as:

$$
|x|=\left\{\begin{aligned}
x & \text { if } x \geq 0 \\
-x & \text { if } x<0
\end{aligned}\right.
$$

Absolute Value

Definition The absolute value (or modulus) of a real number x is defined as:

$$
|x|=\left\{\begin{aligned}
x & \text { if } x \geq 0 \\
-x & \text { if } x<0
\end{aligned}\right.
$$

Geometrically, $|x|$ is the distance on the real line between x and 0 . example:

Absolute Value

Definition The absolute value (or modulus) of a real number x is defined as:

$$
|x|=\left\{\begin{aligned}
x & \text { if } x \geq 0 \\
-x & \text { if } x<0
\end{aligned}\right.
$$

Geometrically, $|x|$ is the distance on the real line between x and 0 . example:

Similarly, for any $x, y \in \mathbb{R},|x-y|$ is the distance between x and y. example:

Properties of Absolute Value

Lemma (Properties of Absolute Value) Suppose $a, b \in \mathbb{R}$. Then:
(1) $|a|=\sqrt{a^{2}}$;

Properties of Absolute Value

Lemma (Properties of Absolute Value) Suppose $a, b \in \mathbb{R}$. Then:
(1) $|a|=\sqrt{a^{2}}$;
(2) $|-a|=|a|$;

Properties of Absolute Value

Lemma (Properties of Absolute Value) Suppose $a, b \in \mathbb{R}$. Then:
(1) $|a|=\sqrt{a^{2}}$;
(2) $|-a|=|a|$;
(3) $|a b|=|a||b|$;

Properties of Absolute Value

Lemma (Properties of Absolute Value) Suppose $a, b \in \mathbb{R}$. Then:
(1) $|a|=\sqrt{a^{2}}$;
(2) $|-a|=|a|$;
(3) $|a b|=|a||b|$;
(9) $\left|\frac{a}{b}\right|=\frac{|a|}{|b|}$ when $b \neq 0$;

Properties of Absolute Value

Lemma (Properties of Absolute Value) Suppose $a, b \in \mathbb{R}$. Then:
(1) $|a|=\sqrt{a^{2}}$;
(2) $|-a|=|a|$;
(3) $|a b|=|a||b|$;
(9) $\left|\frac{a}{b}\right|=\frac{|a|}{|b|}$ when $b \neq 0$;
(3) $|a+b| \leq|a|+|b|$. the triangle inequality.

Properties of Absolute Value

Lemma (Properties of Absolute Value) Suppose $a, b \in \mathbb{R}$.
Then:
(1) $|a|=\sqrt{a^{2}}$;
(2) $|-a|=|a|$;
(3) $|a b|=|a||b|$;
(9) $\left|\frac{a}{b}\right|=\frac{|a|}{|b|}$ when $b \neq 0$;
(3) $|a+b| \leq|a|+|b|$. the triangle inequality.

Proof of (1). By definition, the symbol $\sqrt{a^{2}}$ is always taken to be the non-negative square root of a^{2}. So $\sqrt{a^{2}}=a$ if $a \geq 0$ and $\sqrt{a^{2}}=-a$ if $a<0$. Hence $|a|=\sqrt{a^{2}}$.
We can use (1) to prove (2)-(5).

Absolute Value and Intervals

We can express the set of all solutions to inequalities involving absolute values as unions of one or more disjoint intervals.

Absolute Value and Intervals

We can express the set of all solutions to inequalities involving absolute values as unions of one or more disjoint intervals.
Lemma (Absolute values and Intervals) Suppose a is a positive real number. Then:
(1) $|x|=a \Leftrightarrow x= \pm a$;
(2) $|x|<a \Leftrightarrow-a<x<a \Leftrightarrow x \in(-a, a)$;
(3) $|x|>a \Leftrightarrow x<-a$ or $x>a \Leftrightarrow x \in(-\infty,-a) \cup(a, \infty)$;
(9) $|x| \leq a \Leftrightarrow-a \leq x \leq a \Leftrightarrow x \in[-a, a]$;
(3) $|x| \geq a \Leftrightarrow x \leq-a$ or $x \geq a \Leftrightarrow x \in(-\infty,-a] \cup[a, \infty)$;

Absolute Value and Intervals

We can express the set of all solutions to inequalities involving absolute values as unions of one or more disjoint intervals.
Lemma (Absolute values and Intervals) Suppose a is a positive real number. Then:
(1) $|x|=a \Leftrightarrow x= \pm a$;
(2) $|x|<a \Leftrightarrow-a<x<a \Leftrightarrow x \in(-a, a)$;
(3) $|x|>a \Leftrightarrow x<-a$ or $x>a \Leftrightarrow x \in(-\infty,-a) \cup(a, \infty)$;
(1) $|x| \leq a \Leftrightarrow-a \leq x \leq a \Leftrightarrow x \in[-a, a]$;
(3) $|x| \geq a \Leftrightarrow x \leq-a$ or $x \geq a \Leftrightarrow x \in(-\infty,-a] \cup[a, \infty)$;

Proof of (4). This follows because the distance from x to 0 is less than or equal to a if and only if x lies between a and $-a$.

Examples

(a) $|2 x-3| \leq 1$ if and only if $x \in[1,2]$.

Examples

(a) $|2 x-3| \leq 1$ if and only if $x \in[1,2]$.
(b) $|2 x-3| \geq 1$ if and only if $x \in(-\infty, 1]$ or $x \in[2, \infty)$.

Examples

(a) $|2 x-3| \leq 1$ if and only if $x \in[1,2]$.
(b) $|2 x-3| \geq 1$ if and only if $x \in(-\infty, 1]$ or $x \in[2, \infty)$.

Reading Assignment: Thomas' Calculus, Appendix 3: Lines, Circles, and Parabolas

