MTH4101

Problem sheet for Tutorial 1

Calculus II, Spring 2013

Rainer Klages

- The questions are designed to help you with material covered in Week 1. You will get help with them in the tutorial on 17 or 18 January.
- You should write up your solution to the starred question $\left(^{*}\right)$ clearly and hand it in to your personal tutor in your assigned tutorial on 24 or 25 January for feedback. Remember to put your full name and student number on the top of your solution. Your marked solution to the feedback question will be returned to you in your tutorial on 31 January or 1 February.
- It is important that you try to do all of the questions.

1. Find the following limits:

$$
\text { (a) } \lim _{(x, y) \rightarrow(1,1), x \neq y} \frac{x^{2}-2 x y+y^{2}}{x-y} ; \quad \text { (b) } \quad \lim _{(x, y) \rightarrow(2,0), 2 x-y \neq 4} \frac{\sqrt{2 x-y}-2}{2 x-y-4} \text {. }
$$

2. By using polar coordinates, either find the limit of the following functions as $(x, y) \rightarrow$ $(0,0)$ or show that the limit does not exist:

$$
\text { (a) } \quad f(x, y)=\frac{x^{3}-x y^{2}}{x^{2}+y^{2}} ; \quad(*)(\mathrm{b}) \quad f(x, y)=\frac{y^{2}}{x^{2}+y^{2}} \text {. }
$$

3. Find all the first and second partial derivatives of the function

$$
f(x, y)=e^{y} \cos x-e^{x} \sin y+4 x^{2} y^{3}-3 \ln x
$$

[2009 exam question]
4. Consider the function

$$
f(x, y)=\frac{y}{x}, x \neq 0 .
$$

Show by using different paths of approach that the limit of f does not exist as $(x, y) \rightarrow(0,0)$. [2012 exam question]

