University of London

MTH4100
Exercise sheet 6

Calculus 1, Autumn 2012
Prof. Bill Jackson

1. Identify the particle's path for the given parametric equation by finding a Cartesian equation for it. Graph this equation, indicate the portion of the graph traced by the particle and the direction of motion.
(a)

$$
x=2 \cos \pi t, y=2 \sin \pi t, 0 \leq t \leq 1,
$$

(b)

$$
x=-\sqrt{t}, y=t, t \geq 0
$$

2.

[2008 exam question]
If

$$
x^{3}+y^{3}=56
$$

find the values of $d y / d x$ and $d^{2} y / d x^{2}$ at the point ($-2,4$), using implicit differentiation.
3. Find the linearisation of $f(x)=\cos x$ at $x=\pi / 2$.
$\left.{ }^{*}\right) 4$.
[2008 exam question]
Consider the family of curves given by

$$
f_{a}(x)=2 x^{3}+a x^{2}+1, \quad a, x \in \mathbb{R}
$$

(a) For fixed a, compute the critical point(s) of each curve.
(b) When varying a, the set of all a-dependent critical points lie on a new curve. Compute the equation of that curve.

