MTH4100
 Exercise sheet 2

Calculus 1, Autumn 2012
 Prof Bill Jackson

These questions are designed to help you understand the material covered in week $n, n \in \mathbb{N}$ lectures. Exercise sheets will typically be handed out in the Tuesday lecture of week $n+1$. You will get help on them in the exercise class on Tuesday or Wednesday of the same week. You should write up your solution to the starred question $(*)$ clearly and hand it in to your assigned helper during your week $n+2$ exercise class for feedback. Put your full name and student number on the top of your solution. It is important that you try to do ALL of the questions, not just the starred question.
$\left.{ }^{*}\right) 1$. Find a formula for $f \circ g$ and $g \circ f$ and find the domain and range of each:
(a) $\quad f(x)=2-x^{2}, \quad g(x)=\sqrt{x+2}$
(b) $\quad f(x)=\sqrt{x}, \quad g(x)=\sqrt{1-x}$
2. The graph of f is shown below. Draw the graph of each of the following functions:
(a) $y=f(-x)$,
b) $y=-f(x)$,
(c) $y=-2 f(x+1)+1$,
(d) $y=\frac{1}{2} f(x-2)-2$.

3. (a) Define what is meant by even and odd functions.
(b) Then determine whether the function

$$
f(x)=7 x^{5}-4 x^{2}
$$

is even, odd, or neither. [2009 exam question]
4. Recall the identity

$$
\cos ^{2} \theta+\sin ^{2} \theta=1
$$

and the addition formulas

$$
\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta, \sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta,
$$ which are valid for all angles θ, α, β.

(a) Derive the two double-angle formulas

$$
\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta, \sin 2 \theta=2 \sin \theta \cos \theta
$$

by using (some of) the above three formulas.
(b) Derive the two half-angle formulas

$$
\cos ^{2} \theta=(1+\cos 2 \theta) / 2, \sin ^{2} \theta=(1-\cos 2 \theta) / 2
$$

by using (some of) the first three formulas and one of the formulas derived in 1.(a).
(c) Use the above formulas to evaluate in terms of radicals $\sin \frac{7 \pi}{12}$.
(d) Evaluate in terms of radicals $\cos \frac{\pi}{12}$. [2007 exam question]

