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Question 1

(a) Consider the function

f(x, y) =
y2 − xy√
x−√y

, x, y > 0 , x 6= y .

Find the limit of f as (x, y)→ (0, 0)+. [7]

(b) Find all first-order and second-order partial derivatives of the function

f(x, y) = e3y cos x + ln(2y)− ex sin y .

[7]

(c) Find the equations for the tangent plane and normal line at the point P0(1,−1, 3)
for the surface

x2 + 2xy − y2 + z2 = 7 .

[7]

(d) Obtain the limit as n→∞ for the sequence

an =
(

1
n

)(1/ ln n)

.

[7]

(e) Use a suitable test to determine whether the series
∞∑

k=2

1
k(ln k)2

converges or diverges. [7]

(f) Find the Taylor series generated by

f(x) = x3 − 2x + 1

at the point a = 3. [7]

(g) Sketch the region of integration, and then evaluate the triple integral∫ e

1

∫ 2

0

∫ 1

0

x2y

z
dx dy dz .

[7]

(h) Solve the differential equation
√

x
dy

dx
= ey+

√
x , x > 0 ,

by giving the solution in implicit form. [7]
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Question 2 Use the chain rule of partial differentiation to express dw/dt as a func-
tion of t for

w =
x

z2
+

y

z2
, x = cos2 t, y = sin2 t, z =

1
t
.

Show that one obtains the same result by expressing w in terms of t directly. [11]

Question 3 Use the method of Lagrange multipliers to find the extreme points of
the function

f(x, y, z) = x2 + y2 + z2

subject to the condition

(x− 3)2 + (y − 2)2 + (z − 1)2 = 1 .

[11]

Question 4 State the Ratio Test for a series
∑

an with positive terms. Use this
test to investigate the convergence of the series

∞∑
n=1

(2n)!
(n!)2

.

[11]

Question 5 Find all locations and values of the local maxima, local minima, and
saddle points of the function

f(x, y) = 2x2 + xy + 6x + 3y − 4 .

[11]

End of Paper
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