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Question 1

(a) If z = x + iy is a complex number, find the expressions for |z| and |z − i| in
terms of x and y, and hence describe the locus of the points in the Argand
diagram for which |z| = |z − i|. [7]

(b) Use de Moivre’s theorem to express cos 3θ in terms of powers of cos θ and sin θ. [7]

(c) Consider the function
f(x, y) =

y

x
, x 6= 0 .

Show by using different paths of approach that the limit of f does not exist as
(x, y) → (0, 0). [7]

(d) Find the directional derivative of the function

f(x, y, z) = −7 cos(yz)ex ,

at the point (0, 0, 0), in the direction of the vector A = 4i + 3j− 5k. [7]

(e) Find all the local maxima, local minima and saddle points of the function

f(x, y) = 2xy − 5x2 − 2y2 + 4x + 4y − 4 .

[7]

(f) Sketch the region of integration, and then reverse the order of integration, to
evaluate the integral ∫ 1

0

∫ 1

y
x2exy dx dy .

[7]

(g) Find the sum of the series

∞∑
n=0

(
(−1)n

2n
− 1

4n

)
.

[7]

(h) Find the Taylor polynomials of order one and two for the function

f(x) = ln(cos x) ,

about the point x = 0. [7]
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Question 2

(a) Find all solutions to the equation z3 + 27 = 0 in polar form, and sketch their
locations in an Argand diagram. [6]

(b) Use de Moivre’s theorem to simplify, as much as possible, the fraction

(cos 5θ + i sin 5θ)2

(cos 2θ − i sin 2θ)3
.

[5]

Question 3 Use the chain rule of partial differentiation to express ∂w/∂u and
∂w/∂v as functions of u and v for

w = xy + yz + xz, x = u + v, y = u− v, z = uv.

Show that one obtains the same result by expressing w in terms of u and v directly. [11]

Question 4 Find the maximum value of f(x, y) = 5−x2−y2 on the line x−2y = 2
by eliminating x in the expression for f . Show that one obtains the same result by
using the Lagrange multiplier method. [11]

Question 5 Solve the system u = 3x + 2y, v = x + 4y to find expressions for x and
y in terms of u and v. Use these expressions to find the Jacobian ∂(x, y)/∂(u, v).
Hence evaluate the integral∫ ∫

R
(3x + 2y)(x + 4y) dx dy

for the region R bounded by the lines y = −(3/2)x + 1, y = −(3/2)x + 3 and
y = −(1/4)x, y = −(1/4)x + 1. [11]

End of Paper
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