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Question 1

(a) If z = x + iy is a complex number, find expressions for |z| and |z − 2| in
terms of x and y, and hence shade the region in the Argand diagram for which
|z| ≤ |z − 2|. [7]

(b) Express the complex number z =
√

3 + i in polar form. Hence use de Moivre’s
theorem to find the cube roots of z and sketch their locations on an Argand
diagram. [7]

(c) Find all the first-order and second-order partial derivatives of the function
f(x, y) = sin(x2y)− ex cos y. [7]

(d) Find the equation of the tangent plane and the parametric equations of the
normal line at the point (2, 1, 4) on the surface defined by z − x2y = 0. [7]

(e) Find the volume of the solid that is bounded from above by the plane z =
4− x− y and from below by the rectangle 0 ≤ x ≤ 1, 0 ≤ y ≤ 2. [7]

(f) Find the Jacobian ∂(x, y, z)/∂(u, v, w) for the transformation x = 4u + v,
y = u− 2w, z = v + w. [7]

(g) Use the Sandwich Theorem for Sequences to find

lim
n→∞

sin n

n
.

[7]

(h) Find the sum of the series

∞∑
k=1

(−1)k−1 3
5k−1

.

[7]
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Question 2

(a) Show that

(1 + i)i = e−(π
4
+2kπ)

{
cos(ln

√
2) + i sin(ln

√
2)

}
.

[5]

(b) By writing eax cos bx as the real part of e(a+ib)x, where a and b are real numbers,
use complex numbers to show that∫

eax cos bx dx =
eax

a2 + b2
(a cos bx + b sin bx) .

[6]

Question 3 Use the method of Lagrange multipliers to find the maximum and
minimum values of the function

f(x, y, z) = 2x + y − 2z

subject to the constraint x2 + y2 + z2 = 4. [11]

Question 4

(a) Sketch the region of integration and then reverse the order of integration to
evaluate the integral ∫ 4

0

∫ 2

√
y
ex

3
dx dy .

[6]

(b) Sketch the region of integration and then transform to polar coordinates to
evaluate the integral ∫ 2

0

∫ √4−x2

0
(x2 + y2) dy dx .

[5]

Question 5

(a) Derive the Maclaurin series for the functions (i) ex and (ii) cos x from first
principles. Your answers should include terms up to x4. [6]

(b) Use your results from part (a) to write down power series for e−x
2

and cos(x2)
including terms up to x4. Hence derive a power series for

f(x) = e−x
2

cos(x2)

including terms up to x4. [5]

End of Paper
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