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Question 1

(a) Use de Moivre’s Theorem to express sin 4θ in terms of powers of cos θ and sin θ. [7]

(b) Find the cube roots of the complex number 8+8 i and plot them on an Argand
diagram. [7]

(c) Locate and determine the nature of all the critical points of the function

f(x, y) = 3x2 − 2xy + y2 − 8y .

[7]

(d) Find the directional derivative of the function f(x, y) = exy at the point (−2, 0)
in the direction of the unit vector that makes an angle of π/3 with the positive
x-axis. [7]

(e) Evaluate the double integral ∫ ∫
R
y2x dA

where R is the region defined by −3 ≤ x ≤ 2, 0 ≤ y ≤ 1. [7]

(f) Sketch the region of integration and use polar coordinates to evaluate the
double integral ∫ 1

−1

∫ √1−x2

0
(x2 + y2)3/2 dy dx .

[7]

(g) Find the sum of the series

∞∑
n=1

(−1)n−1 7
9n−1

.

[7]

(h) Use the ratio test to determine whether the series

∞∑
k=3

(2k)!
4k

converges or diverges. [7]
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Question 2 Use the method of Lagrange multipliers to find the minimum value of
the function

f(x, y, z) = xy + 2xz + 2yz

subject to the constraint xyz = 32. [11]

Question 3 Sketch the region R (in x ≥ 0, y ≥ 0) enclosed by the curves y = x,
y = 2x, xy = c2, xy = 2c2 (where c 6= 0 is a constant). By changing to new variables
u = u(x, y) = y/x and v = v(x, y) = xy, calculate the Jacobian ∂(u, v)/∂(x, y) and
hence evaluate the integral ∫ ∫

R
(x2 + y2) dx dy .

[11]

Question 4 Find the first four Taylor polynomials for the function f(x) = lnx
about the value x = 2. [11]

Question 5

(a) Use the integral test to find the values of p for which the series

∞∑
n=2

1
n(lnn)p

converges or diverges. [6]

(b) Use the integral test with the substitution x = tan y to determine whether the
series ∞∑

n=1

8 tan−1 n

1 + n2

converges or diverges. [5]

End of Paper
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