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Question 1 (a) Find the natural domain of

f(x) =
x2 − 4

x+ 2

and determine whether f(x) is continuous at x = −2. [5 marks]

(b) Find the limit

lim
x→0

1− cos(2x)

(2x)2
.

[5 marks]

(c) Find the derivative, g′(x), of

g(x) = ln
(
sin(x2)

)
.

[6 marks]

(d) Find the horizontal, vertical and oblique asymptotes, if any, of

f(x) =
x2 + x+ 1

x2 + x− 3
.

[6 marks]

(e) Given that
cos y = sin 2x ,

and y = y(x), find the values of dy/dx and d2y/dx2 when x = π/6. [8 marks]

(f) Find the area enclosed by the curves x = 0, y = 3 and y =
√
x. [7 marks]

(g) Evaluate ∫
x2 lnx dx .

[8 marks]
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Question 2 Consider the curve y = f(x) for the function

f(x) = x3 − 1

x
.

(a) Identify the domain of f and any symmetries the function may have. [3 marks]

(b) Find f ′(x) and f ′′(x). [2 marks]

(c) Find the critical points for f , and identify the function’s behaviour at each
critical point. [5 marks]

(d) Find where the curve is increasing and where it is decreasing. [3 marks]

(e) Find the inflection points for f , if any occur, and determine the concavity of
the curve. [5 marks]

(f) Determine the behavior of f(x) as x→ ±∞ and identify any
asymptotes. [2 marks]

(g) Plot key points, such as intercepts, critical points, and points of inflection, and
sketch the curve. [5 marks]

Question 3 (a) State the definition of the derivative of the function f(x) with
respect to the variable x. [3 marks]

(b) Differentiate from first principles, f(x) =
1

x+ 2
, that is, by using the above

definition of the derivative. [6 marks]

(c) Find the values of x for which f ′ is defined. Determine the values of x for
which the function f is continuous (give reasons for your answer). [6 marks]

Question 4 (a) Explain what condition a function f must satisfy in order to have
an inverse and define the inverse function of f when this condition is
satisfied. [4 marks]

(b) Define the natural logarithm function lnx and give its domain and range.
Explain why its derivative is 1/x. Deduce that its inverse function, expx,
satisfies

d

dx
expx = expx .

[7 marks]

(c) Evaluate ∫
cosx exp(sinx) dx .

[4 marks]

End of Paper
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