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Question 1 (a) Find the limit

lim
x→1−

(2x + 1)
|x− 1|
x− 1

.

[5 marks]

(b) Find the limit

lim
t→4

t2 − t− 12
t2 − 16

.

[5 marks]

(c) Given that
y3 + x3 + x = 6 ,

and y = y(x) find the values of dy/dx and d2y/dx2 at the point (-1,2). [8 marks]

(d) Find the horizontal, vertical and oblique asymptotes, if any, of

f(x) =
−8x2

2x− 1
.

[6 marks]

(e) Find the derivative g′(x) of

g(x) = x2 cos
(√

1− x2
)

, |x| ≤ 1 .

[6 marks]

(f) Find the area enclosed by the curves y = −(x− 2)2 + 4 and y = −x. [9 marks]

(g) Evaluate ∫
2xex2

dx .

[6 marks]
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Question 2 Consider the curve y = f(x) for the function

f(x) = −1
2
x4 + 4x2 .

(a) Identify the domain of f and any symmetries the curve may have. [3 marks]

(b) Find f ′(x) and f ′′(x). [2 marks]

(c) Find the critical points for f , and identify the function’s behaviour at each
one. [5 marks]

(d) Find where the curve is increasing and where it is decreasing. [3 marks]

(e) Find the inflection points for f , if any occur, and determine the concavity of
the curve. [5 marks]

(f) Identify any asymptotes. [2 marks]

(g) Plot key points, such as intercepts, critical points, and points of inflection, and
sketch the curve. [5 marks]

Question 3 (a) State both definitions of the derivative of the function f(x) with
respect to the variable x. [4 marks]

(b) Differentiate from first principles, f(x) =
1√
x

, that is, by using one of the

above definitions of the derivative. [6 marks]

(c) State for which values f is continuous, and for which values f ′ is defined.[5 marks]

Question 4 Find all the minima and maxima of the function

f(x) = |2 sin(x)| − |cos(2x)| ,

on the interval I = [0, π]. Indicate what type of minima and maxima (absolute or
local) these are. [15 marks]

End of Paper
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