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1. Marks are awarded for partial answers, so you should show your workings.

(a) [7 marks] If z = x + iy is a complex number, find and sketch the region in the
Argand diagram for which |z + 1| ≥ |z| and interpret this geometrically.

(b) [7 marks] Find the cube roots of the complex number −5
√

2+5
√

2i and plot these
on an Argand diagram.

(c) [7 marks] Find the sum of the series:
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(d) [7 marks] Find the first four terms (i.e. up to and including terms of order x6) of
the binomial series of (1− x2)1/2.

(e) [7 marks] Find the radius and interval of convergence for the series
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being careful to specify the behaviour at the end points of the interval.

(f) [7 marks] Find all first-order and second-order derivatives of the function f(x, y) =
yex − x sin y + x2 − y2.

(g) [7 marks] Find the equation of the tangent plane and the equation of the normal
line at the point P0(1, 0, 1) on the surface (x, y, z) such that 3z + x2 = 4.

(h) [7 marks] Evaluate the integral
Z Z

R

ex−y dx dy

where R is the triangular region bounded by the lines x = 0, y = 0 and y +x = 1.

[Next question overleaf]
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2. [11 marks] Use the integral test to find the values of p for which the series.
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converges. Explain why the ratio test cannot be used to determine the convergence of
this series.

3. [11 marks] Use the method of Lagrange multipliers to find the extreme points of the
function f(x, y, z) = x2+y2+z2 subject to the condition (x−1)2+(y−2)2+(z−3)2 = 4.

4. [11 marks] Find the linearisation L(x, y, z) of the function f(x, y, z) = xz + 2yz − 3 at
the point P0(1, 1, 2) and hence find an upper bound for the error E in approximating
f(x, y, z) by L(x, y, z) over the rectangle |x− 1| ≤ 0.1, |y − 1| ≤ 0.1, |z − 2| ≤ 0.2.

5. [11 marks] Sketch the region of integration of the double integral

Z 1

0

Z 1

√
y

y sinx5 dx dy .

By reversing the order of the integration, evaluate the integral.

[End of examination paper]


