
Chapter 4

Vector integrals and integral theorems

Last revised: 1 Nov 2010.

Syllabus covered:
1. Line, surface and volume integrals.
2. Vector and scalar forms of Divergence and Stokes’s theorems. Conservative fields: equivalence to curl-free
and existence of scalar potential. Green’s theorem in the plane.

Calculus I and II covered integrals in one, two and three dimensional Euclidean (flat) space (i.e.R, R
2

andR
3). We are still working inR3 so there is no generalization to be applied to volume or triple integrals,

but we will generalise one dimensional integration from a straight line to an integral along a curve, and we
will generalise two-dimensional integration from a regionin a plane to a curved surface.

We will also be working with integration of vectors, though in many cases we will be using a scalar
product so the final quantity to be integrated becomes a scalar. In the cases with a scalar product:

∫

f (x) dx generalizes to
∫

C
F ·dr on a curveC , called aline integral (section 4.1).

∫ ∫

f (x, y) dxdy generalizes to
∫

S
F ·dSover a surfaceS , called asurface integral (section 4.2).

We will then have to study the generalizations of
∫ b

a

df
dx

dx= f (b)− f (a) , (4.1)

called the ‘fundamental theorem of calculus’, which we use in the proofs. This theorem relates a one-
dimensional integral to a (pair of) zero-dimensional evaluations at the two endpointsx = a,b. The higher
dimensional versions do the following:

Stokes’s theorem relates the surface integral of a curl to a line integral (2 dimensions to 1) around the
edge of the surface: see section 4.6.

The Divergence Theorem1 relates the volume integral of a divergence to a surface integral (3 dimensions
to 2) over the boundary of the volume: see section 4.4.

There is also a special case of Stokes’s theorem where the surface is a plane: this is Green’s theorem

1First discovered by Joseph Louis Lagrange in 1762, then independently rediscovered by Carl Friedrich Gauss in 1813, by George
Green in 1825 and in 1831 by Mikhail Vasilievich Ostrogradsky, who also gave the first proof of the theorem. Thus the resultmay be
called Gauss’s Theorem, Green’s theorem, or Ostrogradsky’s theorem.
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relating the integral of a curl to a line integral (2 dimensions to 1): see section 4.5.

[Aside: All these are in fact special cases of the general Stokes’s theorem which relates ann−1 dimen-
sional integral of a field to then dimensional integral of its derivative. Here the field is a generalization of a
vector field called an(n−1)-form field.]

Finally we will discuss the application to potentials, and the proofs.

Before moving on to line and surface integrals, we consider the case where one wants to integrate a vector
functionF(u) of one variable,u, with respect tou. The integral can be calculated simply by integrating the
components (in Cartesian coordinates) ofF = (F1, F2, F3):

∫

F du =

(

∫

F1 du,
∫

F2 du,
∫

F3 du

)

(4.2)

= i
∫

F1 du + j
∫

F2 du +k
∫

F3 du (4.3)

Integration of a vector in this case is just a set of three ordinary integrals. The restriction to Cartesian
coordinates can be overcome by looking at the definition in vectorial terms: we go back to the basic definition
of integration, which leads to a geometrical picture ofG ≡

∫ b
a Fdu (see Fig. 4.1):

G =

∫ b

a
F du = lim

δup→0

N

∑
p=1

F(u)δup .

F(u)δu1

F(u + δu1)δu2

F(u + δu1 + · · ·)δuN

G
G ≡

∫ b

a

F(u) du

= lim
N→∞, δup→0

N
∑

p=1

F(u)δup

Figure 4.1: Geometrical picture ofG =
∫ b

a F du = limδup→0 ∑N
p=1 F(u)δup .

Example 4.1. If v(t) ≡ dr/dt is the velocity of a particle, as a function of timet, then

∫ t2

t1
v dt =

∫ t2

t1

dr
dt

dt =

∫ r(t2)

r(t1)
dr = r(t2)− r(t1) .

Note here thatv is the vector velocity of the particle, so the time-integralis the vector distance between the
two end-points. If we had putv instead ofv in the integral, then the result would be a scalar equal to thetotal
arc-length of the curved pathr(t), as we met in Chapter 2.

Warning: there seems to be a common belief that an integral always represents an area or volume.
This comes from 1-D integration where

∫

f (x) dx can be shown as an area between a curvey = f (x) and the
x−axis; or in 2-D integration the result

∫

h(x,y) dxdycan be expressed as a volume between thexy plane
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and the surfacez = h(x,y). However, when we take general line and surface integrals the results are not
necessarily areas and volumes; we will see that these integrals can represent various things such as distance
travelled, work done by a force, flow of a fluid crossing a surface, etc, but there is not always a simple
geometrical picture for the result of an integral.

4.1 Line Integrals

(See Thomas 16.1 and 16.2: note that Thomas begins by defininga scalar integral
∫

f |dr |, in the notation
below. I come back to this at the end of this section.)
SupposeF = (F1, F2, F3) is a vector field defined in some region of space, andC is a parametrized curve
through that region fromr1 to r2, so thatC is given by

r(t) = (g(t), h(t), q(t)) (t1 ≤ t ≤ t2),

andr1 = r(t1), r2 = r(t2). Then, one can define the line integral

∫ r2

r1

F ·dr

to be

∫ t2

t1
F(r(t)) · dr

dt
dt ≡

∫ t2

t1

(

F1
dg
dt

+F2
dh
dt

+F3
dq
dt

)

dt (4.4)

Warning: do not forget to write the components ofF in terms of the parametert, so thatt is the only
variable that appears inside the integral!. Hence you must write F(r) = F(r(t)), so we replaceF1(x, y, z) by
F1(g(t), h(t), q(t)), and so on; then we evaluate the dot product ofF anddr/dt, before finally integrating
overt to get the numerical answer.

Second warning: it seems to be easy to confuse where one has to user(t) and where one uses dr/dt; you
have to evaluateF at positionr(t), while the line-segmentdr is given by(dr/dt) dt.

The above is just a version of the fundamental definition of anintegral as the limit of lots of small
contributions. In this case it’s the scalar products ofF(r) with small displacementsdr alongC :

∫ r2

r1

F ·dr = lim
δ r p→0

N

∑
p=1

F(r) ·δ r p

If we are given a geometrical description of the curve without a parametrization, we have to firstfind a
parametrisation of the described curve to actually evaluate the integral. For lines, circles, ellipses and so we
can use, for example, (1.33) and (1.18)–(1.20).

Example 4.2. Evaluate the integral
∫

F ·dr for the vector fieldF = −4xyi +8yj +2k, from the origin to
the point(2, 4, 1) along the following three paths:

1. along the curver = t i + t2j + 1
2tk, 0≤ t ≤ 2,

2. from the origin to(2, 0, 0), then from there to(2, 4, 0), then to(2, 4, 1), along straight lines [Note that
the answer will be the sum of the three parts: a path may have several pieces, providing the next one
begins where the previous one ends.]

3. on the surface 4x2 +y2 = 32zalong a line with constanty/x.
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Note that only for the first of these do we have the parametrization given: in the second and third we’ll have
to make a parametrization from the definitions.

1. In this case we are given the parametrised curver(t) as above, and from that we get
dr
dt

= i +2t j + 1
2k,

andF(r(t)) = −4(t)(t2)i +8(t2)j +2k. The final bits we need is thet− values at the given endpoints
r1 = (0,0,0) andr2 = (2,4,1); it is easy to see those aret = 0 andt = 2 (solve the easiest equation e.g.
x = t, and plug that in to the other two to check). Putting things together, we have

∫ r2

r1

F.dr =

∫ 2

t=0
F(r(t)).

dr
dt

dt

=

∫ 2

0
(−4t3i +8t2j +2k).(i +2t j + 1

2k) dt

=

∫ 2

0

[

(−4t3)(1)+ (8t2)(2t)+ (2)(1
2)
]

dt

=

∫ 2

0
(12t3+1) dt

=
[

3t4 + t
]2
0 = 48+2= 50.

2. Now our given “curve” is three straight line segments joined end-to-end and we need parametrisations
for each, separately.
The first segment is from(0, 0, 0) to (2, 0, 0). The straight line is, from the general form of Eq. 1.33
for the case of a line joiningr1 andr2, i.e. r = r1 + t(r2− r1),

r = 0+ t(2i), 0≤ t ≤ 1,

Here we could call 2t simplyx, so
r = xi, 0≤ x≤ 2.

Along this line we have dr = i dx. To get the value ofF we substitutey = z= 0 into the general form
for F, givingF = 2k. Taking the scalar product,F ·dr = 0 and hence this segment gives a zero integral.

In the second segment, from(2, 0, 0) to (2, 4, 0), we similarly get

r = 2i +yj , 0≤ y≤ 4

so along it, dr = jdy. Substitutingx = 2, z= 0 in F we haveF = −8yi + 8yj + 2k. SoF ·dr = 8y dy
and hence this gives

∫ 4

0
8y dy = [4y2]40 = 64

In the last segment, from(2, 4, 0) to (2, 4, 1),

r = 2i +4j +zk, 0≤ z≤ 1

so along it we have dr = k dz, andx = 2, y = 4 givesF = −32i +32j +2k, soF ·dr = 2dz and hence
this gives

∫ 1
0 2 dz= 2.

Finally adding the integrals from the three segments together, we get the full line integral over our
given path= 0+64+2= 66 .

3. Now we are integrating along a line in a curved surface; theequation for the line is not given explicitly,
but we are told two things which let us solve for it: the line isin the surface 4x2 + y2 = 32z, and our
line has constanty/x soy = kx for some constantk. Geometrically, our line will be the intersection of
a planey = kx (containing thez−axis) with the above surface. Since at the second end pointx = 2 and
y = 4, we needk = 2 soy = 2x. Substituting that in 4x2 + y2 = 32z gives 8x2 = 32z sox = 2

√
z, and
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y = 4
√

z. Now we have bothx andy in terms ofz, so we can usezas the one parameter for our curve:
we have

r = 2
√

zi +4
√

zj +zk 0≤ z≤ 1 ,

where the limits onz follow from the given endpoints. Once we have a one-parameter expression
for the curver(z), it is straightforward: we get dr = (i/

√
z+2j/

√
z+k)dz, while F(r(z)) = −32zi +

32
√

zj +2k. Hence inserting those into Eq. 4.4, remembering to take thescalar product, we have

∫ 1

0
(−32

√
z+64+2) dz=

∫ 1

0
(66−32

√
z) dz= [66z−64z3/2/3]10 = 66− 64

3
,

which we could also write as 4423.

Note: in the above, we could alternatively have chosenx as the one parameter, and writey = 2x,
z= x2/4 to getr = xi + 2xj + (x2/4)k, and range 0≤ x ≤ 2. It is straightforward to check that this
gives the same result 442

3 for the line integral.

As well as giving some examples of how to calculate line integrals, this example makes the important
point that in general the result depends on the curve, not just on its two endpoints. We shall return to this
matter in Section 4.7, where we will find that ifF has zero curl (irrotational), the resulting line integral only
depends on the two endpoints, not the curve between them.

Exercise 4.1. Calculate
∫

C F ·dr , whereF = 4yzi −3zj + 2x2k, over each of the following curves from
(0,0,0) to (1,1,1):

(a)C: r = t i + t j + tk 0≤ t ≤ 1

(b) C: r = t2i + t j + t3k 0≤ t ≤ 1
2

If the vector fieldF represents aforce (e.g. gravitational force), then
∫ r2

r1

F.dr

is called awork integral and its value is thework done by the force for a particle moving betweenr1 andr2,
which equals the increase in energy of the body acted on. Thisoccurs because for each small movementdr ,
(small enough to be a straight line), ifθ is the local angle betweenF anddr , thenF cosθ is the component
of forceparallel to dr , soF ·dr = F dr cosθ is the work done by the force, along the small stepdr . The line
integral just adds up that work along all the small steps along the path, so the line integral is the total work
done fromr1 to r2.

If instead of representing a force,F represents the velocity field in a fluid, and ifC is some curve in the
fluid, then

∫

C
F ·dr is called theflow along curveC . If C is a closed curve, the flow is called thecirculation

aroundC .

Finally, note that Thomas’s form
∫

f |dr | is obtained if one assumes thatF is parallel to the unit tangent

vector to the curve,t =
dr
dt

/

∣

∣

∣

∣

dr
dt

∣

∣

∣

∣

, at all points on the curve, since
dr
dt

dt = t|dr |, and in this case, takingF = f t,

F · dr
dt

dt = f t · t|dr | = f |dr | .

Thus Thomas’s starting point is simply a special case of the general line integral.
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4.2 Surface integrals

(See Thomas 16.5 and 16.6, but be aware that Thomas starts by defining the integral of a scalar, using what
is, in the notation below,

∫

f |dS|. )

To define surface integrals, we now have to take into account that a small area on a curved surface has
both a magnitude and a direction (the normal to the surface) associated with it, so we can represent a small
area as a vector, as we saw in Chapter 2.

Consider an areaS in a plane (see Fig. 4.2a). Ifn is a unit vector perpendicular to the plane, then the
vector representing the area,S, is defined to be

S= Sn

(a) (b)n

n

δS

S

Figure 4.2: (a) Normaln to a plane areaS. The vector area isS= Sn. (b) Normaln to a more general surface.
The vector area of the small surface element isδS= δSn, whereδS is the magnitude of the area.

In the case of a curved surface in three dimensions (see 4.2b), we need to pick a small areaδSwhich is
small enough to be approximated as (almost) flat, and define the vectorδS for that area elementδSas

δS= δSn ,

wheren is a unit vector normal to the surface elementδS. Note we are still using the convention that vectors
are written in bold type and the same symbol in ordinary type means the magnitude, thusδS= |δS|. In the
limit we shall write dSrather thanδS. (Thomas uses dσ for this dS.)

Note we still have a sign ambiguity in this definition, because either direction of the unit vector along the
normal line could be used. One case where we can fix the sign is the case of aclosedsurface, wheren is
generally taken to be theoutward-pointing unit normal vector. If the surface is not closed, we will haveto
explicitly specify geometrically one of the two possible directions forn.

Now that we have defined how to represent a small area as a vector, we can now define thesurface
integral for a vector fieldF over a general curved surfaceS :

∫

S

F ·dS =
∫

S

F ·n dS . (4.5)

Such an integral is also called theflux of F across areaS . Since the quantity integrated is a scalar product
of two vectors, the answer is a scalar quantity.
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These surface integrals arise in a number of physical situations: one example is the case whereF rep-
resents the velocity field in a fluid, where the surface integral represents the volume of fluid crossing the
surfaceS per unit time. Another example is ifF is a magnetic fieldB, in which case the integral would be
themagnetic fluxacross the surfaceS . (These results occur becauseF cosθ is the component ofF parallel to
the local normaln i.e. perpendicular to the surface; while the component ofF parallel to the surface (perpen-
dicular ton) does not contribute to the flux across the surface. Thus, theflux of F crossing any small patch
of surfacedS is |F|cosθ dS, which isF ·dS from the definition of the dot product. The integration then just
adds up the contribution from all the infinitesimal patches,to get the flux crossing the whole curved surface.

The double integrals in a plane that we met before,
∫ ∫

f (x,y) dxdy, can be thought of as integrals ofF.dS,
where
F = f k and dS= (dxdy)k .

The tricky part is, once we are given a fieldF and a surfaceS , to turn the general form
∫

S
F.dS into a

double integral that we can actually do. We shall give some general rules after studying some examples.

We next look at three examples of increasing difficulty: one is a simple plane case, the second a curved
surface where the integral is easy, and the third gives us thepatterns we need for the general case.

Example 4.3. If F = (3x, 2xz, 3), evaluate the flux ofF across the surfaceS : z= 0, 0≤ x≤ 1, 0≤ y≤ 2
(where the normal is to be in the positivezdirection).

Here the given surface is a rectangle in thexy-plane, so the normaln is ±k. We are told to take the plus
sign. We need to integrate overx andy with limits as above:

∫

S

F ·ndS=

∫ 1

0

∫ 2

0
(3xi +(2x)0j +3k).(0i +0j +1k) dydx =

∫ 1

x=0

∫ 2

y=0
3 dydx =

∫ 1

0
6 dx = 6.

Example 4.4. If the velocity field of a fluid isv = 1
r2 er , wherer is the distance from the originO ander

is a unit vector at positionr pointing away from the origin, find the flux
∫

v ·ndSacross a sphereS of radius
a whose centre is at the origin. (The outward normal should be taken.)

In this case, the outward normal ander are the same vector, so

v ·n =
1
r2 er ·er =

1
r2

(er .er = 1 becauseer is a unit vector). On the given sphere of radiusa, r = a, so
∫

S

v.ndS=

∫

S

1
a2 dS=

1
a2 × (Area of sphere of radiusa) =

1
a2 4πa2 = 4π .

using the fact that1
a2 is a constant, so can be taken outside the integral sign.

Example 4.5. Find the flux of the fieldF = zk across the portion of the spherex2 +y2 +z2 = a2 in the
first octant (this is the 1/8-th of space in whichx, y andzare all≥ 0) with normal taken in the direction away
from the origin.

This example is easier in spherical polars (see later), but we can do it in Cartesians. Write the required
part of the sphere as a surfacez=

√

a2−x2−y2 (note that for a whole sphere we would also need the points
wherez = −

√

a2−x2−y2, the square root being understood to be the non-negative one). Consider the
displacement vector for a small change dx, by taking the derivative ofr = (x, y,

√

a2−x2−y2) as in section
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3.1. It will be
∂ r
∂x

dx =

(

∂x
∂x

,
∂y
∂x

,
∂z
∂x

)

dx =

(

1, 0,
−x

√

a2−x2−y2

)

dx (4.6)

and similarly a small change iny gives a displacement

∂ r
∂y

dy =

(

0, 1,
−y

√

a2−x2−y2

)

dy . (4.7)

The magnitude of the corresponding area element is then given by the area of a parallellogram with sides
(4.6) and (4.7), and the normal direction is perpendicular to them both, so we need their cross-product

dS =

(

1, 0,
−x

√

a2−x2−y2

)

dx×
(

0, 1,
−y

√

a2−x2−y2

)

dy

=

(

x
√

a2−x2−y2
i +

y
√

a2−x2−y2
j +k

)

dxdy

ThusF ·dS= zdxdy =
√

a2−x2−y2dxdy.

Now we need the limits on the variables. The first octant of thesphere lies above the first quadrant of the
circle x2 +y2 = a2, z= 0, so we will have

∫ a

x=0

∫

√
a2−x2

y=0

√

a2−x2−y2 dydx .

The rest of the problem is just a double integral like those inCalculus II. We can do it by a substitution such
asy =

√
a2−x2sinξ which gives

∫ a

0
(a2−x2)

∫ π/2

ξ=0
cos2 ξ dξ dx

and this turns out to beπa3/6 using the double-angle formula.

Note that parametrization by a pair of coordinates will not always give all the surface: for example,
consider the surface consisting of two touching perpendicular squares, one square with a vertex at the origin
and sides 1 along thex andy axes, and the similar square in the(x, z) plane: this surface cannot be covered
by any pair of the Cartesian coordinates, though it can easily be split into two pieces each of which separately
can be handled that way, and the results added.

The final part of the above example provides general methods for turning a surface integral like Eq. 4.5
into a double integral we can actually do. We next look at 3 cases:

1. Surface given by two parametersr(u,v).

2. Surface given byz= h(x,y)

3. Surface given byg(x,y,z) =const.

Note that if we are only given a geometrical “description” ofthe surface, we will need to put our surface
into one of the above forms before we proceed: which is easiest may depend on the surface, but usually the
two-parameter case is simplest.
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4.2.1 Surface integral: surface given by two parameters

First consider the case wherethe surface is given, or can be found, in terms of two parameters: several
examples were covered in Chapter 2. See also Thomas 16.6, anddiagrams 16.55 and 16.56. For a surface
given by two parametersu,v we have:

r(u,v) = x(u, v)i +y(u, v)j +z(u, v)k .

Now we can do the surface integral as follows:

1. Calculate the partial derivatives
∂ r
∂u

and
∂ r
∂v

.

2. Calculate the cross product

dS=

(

∂ r
∂u

)

×
(

∂ r
∂v

)

dudv

As we showed previously, this vector is normal to the surfaceand has magnitude equal to the area of
the small parallelogram with four corners given byr(u,v), r(u+du,v), r(u,v+dv), r(u+du,v+dv),
so it is thedS we want.

3. ExpressF in terms ofu,v usingr = r(u,v) as given above and substituting.

4. Form the scalar productF ·dS

5. From the given geometry of the surface, work out appropriate limits onu,v and perform the double
integral overduanddv.

This gives us finally
∫

S

F ·dS=
∫

v

∫

u
F(r(u,v)) ·

(

∂ r
∂u

× ∂ r
∂v

)

dudv

Warning: note that the cross-product above may be opposite to the required normal direction, so one may
need to take its negative (which is equivalent to just swapping the order in the cross-product).
Both for this reason, and for working out limits on the variables, it is a good idea to draw a sketch first.

For the standard surfaces such as cylinders, spheres and ellipsoids we already know some parametriza-
tions, (1.28)–(1.31).

4.2.2 Surface integral: surfacez= h(x,y)

The second case to consider is where we have a surface given asone coordinate is a function of the other
two, e.g.z= h(x,y). This is essentially a special case of the more general two-parameter case above where
x = u, y = v, z= h(u,v). Just usingx andy as the parameters, we get the surface asr = (x,y, h(x,y)), and
partial differentiation gives

∂ r
∂x

= (1,0,∂h/∂x)
∂ r
∂y

= (0,1,∂h/∂y) ;

so the area element on the curved surfacez= h(x,y) is again the cross product of the above, which is

dS= (−∂h/∂x, −∂h/∂y, 1) dxdy .

Next we evaluateF(r) on the surface usingr = (x,y,h(x,y)) again, we evaluate the scalar productF ·dS,
and finally do the double integral with respect tox,y.

49



(There are other similar cases if insteadx is given as a function ofy,z by x = g(y,z) ; this is very similar
to the above except for swappingx,y,z) .

Aside: It is also useful to note that the unit normal to the surfacez= h(x,y) is

n =
1

√

(∂h/∂x)2 +(∂h/∂y)2+1
(−∂h/∂x, −∂h/∂y, 1)

Sincen is a unit vector, the angleθ this makes with thezaxis is given by

cosθ = k.n = 1/
√

(∂h/∂x)2 +(∂h/∂y)2+1 .

The magnitude dS= |dS| is then
dS=

√

(∂h/∂x)2 +(∂h/∂y)2+1 dxdy = dxdy/cosθ .

This is not needed for the surface integral in the current case, but we will make use of this result in the
next section .

4.2.3 Surface given byg(x,y,z) = constant

The third case of a surface integral is that where we are givena vector fieldF, and where our surface is
defined by a functiong(x,y,z) = const, (and some specified boundaries), when we do not necessarily have a
convenient parametrization. As long as the surface is single-valued in two coordinates, e.g. for a givenx,y
there is a uniquezon the surface, we can use those two coordinates e.g.x,y as the two parameters as follows:

1. Calculate∇g (which is the vector normal to the surface).

2. Find the unit normal vector in that directionn = ∇g/|∇g|.

3. Calculate cosθ = n ·k, whereθ is the angle betweenn and the+z-direction.

4. Write dS = ndS= ndxdy/cosθ , using the result from the previous subsection. (For a geometrical
illustration, consider a ’light bulb’ atz= +∞. A small patch on our surface with areadSwould cast
a ’shadow’ of areadScosθ on thexy plane; reversing this, the required areadSon the surface which
casts a shadow of areadxdywill be dS= dxdy/cosθ ).

Combining the above expressions forn and cosθ gets us dS= (∇g)dxdy/(∇g ·k) .

5. Finally, use this to formF.dS , and do the double integration with respect tox andy.

Thus, we can use(x, y) as our two parameters, provided cosθ 6= 0 over our range ofx,y, and also provided
that we can expressF(r) on the surface in terms ofx andy. Here we may need to solve forz in terms ofx,y
on our given surface; or if we are lucky, things may simplify so that at givenx, y andg(x,y,z) we can evaluate
F.dSwithout actually needing to solve forz.

Note that Thomas gives an even more general version of this where he considers a plane with normal
p and an area dA in the plane (in place ofk and dxdy): because he is working with|dS| he uses|cosθ |
and writes 1/|cosθ | as|∇g|/|∇g.p|. While one is unlikely to need to use a generalp, that version has the
advantage of covering the three casesp = i, p = j andp = k in one formula.

Exercise 4.2. If F = xi +yj , evaluate
∫

S
F ·n dS
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whereS is the rectangular box formed by the six planes

x = 0, a, y = 0, b, z= 0, c.
2

Exercise 4.3. If F = 3y2i− j +xzk, evaluate the integral
∫

S
F.dS, whereS is the surfacez= 1, 0≤ x≤ 1,

0≤ y≤ x (take the normal pointing in the positivezdirection).
[Answer: 1/3] 2

Exercise 4.4. If F = i + j +k, evaluate
∫

S
F ·n dS

over the hemispherical surfaceSgiven byz≥ 0,x2+y2+z2 = a2, taking the normal outward from the origin.
[Answer:πa2] 2

To link up with Thomas, his initial
∫

f |dS| is just
∫

F.dS for a vector field such thatF = f n on the surface.

4.3 Volume Integrals

In Cartesian coordinates, consider a small cuboid with one corner at(x,y,z) and sides(dx,dy,dz). This has
the eight corners(x,y,z), (x+dx,y,z), . . . , (x+dx,y+dy,z+dz) , and the infinitesimal volume of the cuboid
is obviously dV = dxdydz. Since in this course we will not be considering curved three-dimensional objects
in four-dimensional space, we do not have to think about a vectorial version ofdV.

However, the fact thatdV is avolumeelement is an important way to look at it. If we re-label our space
using new coordinates(u, v, w) , then taking small displacementsdu,dv,dw gives us small displacements
(∂ r/∂u)du, (∂ r/∂v)dv, (∂ r/∂w)dw in ordinaryx,y,z space. These three vectors will form a small paral-
lelepiped, and the volume of that parallelepipeddV is given by a scalar triple product of the three vectors
above (see section 1.7); that will give the Jacobian determinant for change of variables in a triple integral,

dV =

∣

∣

∣

∣

∂ (x,y,z)
∂ (u,v,w)

∣

∣

∣

∣

dudvdw

as in section 1.3; so this explains why the Jacobian formula works.

Usually the integrand of a volume integral is a scalar. However, we could integrate vectors inR3, though
this is not so often used. Given a vector fieldF = F1i +F2j +F3k, one can define

∫

V
FdV =

(

∫

V
F1dV

)

i +
(

∫

V
F2dV

)

j +
(

∫

V
F3dV

)

k

For example,F might be the momentum vector field in a fluid, (in that case we would haveF = ρv where
ρ is the density andv is the velocity); the volume integral above would then equalthe total net momentum of
that volume of fluid.

The most useful integrals we will deal with from here onwardsare the line integral
∫

C
F · dr , the flux

across a surface,
∫

S
F ·dS, and the integral of a scalar over a volume,

∫

V f dV .

4.4 The Divergence Theorem

(See Thomas 16.8)
The Divergence Theorem states (following Thomas’s wording) that “under suitable conditions”:
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Theorem 4.1 The flux of a vector fieldF across a closed oriented surfaceS in the direction of the surface’s
outward unit normal vector fieldn equals the integral of∇ ·F over the regionD enclosed by the surface

∫

D

∇ ·F dV =

∫

S

F ·n dS≡
∫

S

F ·dS (4.8)

If asked to state this theorem, youmust define the terms used, and state the conditions on the surface(i.e.
“closed, oriented”) and on the direction of the normal (outward).

We have not spelt out here in detail the ‘suitable conditions’ required ofF and the surface. These, and a
proof, are discussed in section 4.9, but will not be examinable.

Here the word ‘Oriented’ means we assign an outward direction for the normal to S in a consistent and
continuous way. An S for which this is possible is calledorientable: the Möbius strip (see Thomas Fig.
16.46) is an example of a non-orientable surface.

Note that it is not required thatS has a single connected piece. For instance, it could have twoparts, one
inside the other, and thenD would be the volume in between.

The Divergence theorem appears in a number of important physical situations such as Maxwell’s equa-
tions in electromagnetism, and various cases in fluid dynamics. From a purely mathematical viewpoint,
another use is that to calculate either of the integrals in it, we can use the other one if it is easier to do.

In the next example we calculate both sides of the DivergenceTheorem for a simple case, and verify they
really are equal.

Example 4.6.Supposef = xy. Find a vector fieldF such that∇ · F = f . SupposeV is the closed
rectangular volume bounded by the planesx = 0,a, y = 0,b, z= 0,c, andS is the surface of the volume.
Evaluate directly

∫

V
f dV and

∫

S

F.ndS

(wheren is an outward normal), and show that they are equal – as they should be, according to the Divergence
Theorem.

The volume integral is straightforward.

∫ c

0

∫ b

0

∫ a

0
xydxdydz =

∫ c

0

∫ b

0
[1
2x2y]a0 dydz=

∫ c

0

∫ b

0

1
2a2y dydz

=

∫ c

0
[1
4a2y2]b0 dz=

∫ c

0

1
4a2b2 dz= 1

4a2b2[z]c0 = 1
4a2b2c.

There are numerous ways to construct a vector fieldF of the required form, e.g. by integratingf with
respect tox and making this thex-component of a vectorF, so

F =
(

x2y/2,0, 0
)

.

Our closed surfaceS enclosingV is a cuboid with six faces, so we must evaluateF.n on each of the six and
add the results. Since our cuboid is aligned with thex,y,z axes, on two of the faces,n = ±i, on twon = ±j
and on the last twon = ±k.

BecauseF ∝ i is always parallel to thex-direction,F.n = 0 on the four faces wheren = ±j , ±k, so those
give zero surface integral. The remaining faces are the two wherex = 0 andx = a:
On thex = 0 face,F = 0 and soF.n = 0. This leaves only the facex = a. On that faceF.n = (a2y/2)i.i =
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a2y/2, and we havedS= dydz. Integrating this over that face with respect toy,z gives

∫

S

F.n =

∫ b

0

∫ c

0

1
2

a2y dzdy =

(

1
2

a2
)(

1
2

b2
)

c =
1
4

a2b2c ,

which agrees with the volume integral of∇ ·F above.

Example 4.7. A more typical example of the use of the Divergence Theorem isthe following. Find the
integral

∫

SA.dS for A = (x, z, 0) and the surfaceSof a sphere of radiusa.

Using the divergence theorem, the surface integral is equalto the volume integral
∫

V ∇ ·A dV over the
volumeV interior to the sphere. But∇ ·A = 1, so the volume integral is

∫

1 dV over the sphere, which is the
volume of the sphere= 4πa3/3.

Doing the surface integral
∫

SA ·dSdirectly is possible, but much more long-winded.

Example 4.8. Another good example is that from Example 4.5, where we evaluated a rather fiddly
surface integral over 1/8th of a sphere. In that case, we weregivenF = zk; so∇ ·F = 1; and the Divergence
theorem tells us that a volume integral of∇ ·F is equal to the surface integral ofF ·dSover thewholesurface
bounding the volume. We may choose our volume as the interiorof the 1/8 sphere, bounded by three planes
x = 0, y = 0, z= 0 and the 1/8 spherex2 + y2 + z2 = a2 with x,y,z> 0, then the volume integral of∇ ·F is
just (1/8) (Volume of full sphere)= πa3/6.

The surface integral is the sum of four parts: one part over the 1/8 surface of the sphere which we did
before, plus three surface integrals over flat quarter-circles in each of thexy, xz andyz planes: those have
outwardunit normal vectors−k, −j , −i respectively since our volume is on the positive side of eachplane.
But F = zk, so for the second and third of those planes the dot productF.dS is zero; and for the first plane,
we are atz= 0 soF = 0. Therefore, all three of the flat quarter-circles give us surface integrals of 0 ; so the
surface integral ofF.dS over the 1/8 sphere is equal to the volume integral of∇ ·F, = πa3/6, QED.

Exercise 4.5. State the Divergence Theorem. Evaluate both sides of the Divergence Theorem for the
vector fieldF = xy2zk over a volumeV which is the interior of the unit cube, i.e. the cube whose vertices are
at (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 1, 1), (1, 0, 1), (1, 1, 0) and(1, 1, 1). 2

The Divergence Theorem equates two scalar values. However,one can derive from it vector identities.
For example, we can obtain what is called the vector form of the theorem:

∫

U dS=

∫

∇U dV , (4.9)

whereU is a scalar field, and both sides of the above equation are vectors.

This is proved as follows: given the scalar fieldU , we choose any constant vectora and define a new
vector fieldF = U a; next we apply the usual divergence theorem toF, and the product rule Eq. 3.6 gives us
∇ · (Ua) = 0+a · (∇U), so

∫

aU · dS=

∫

a · (∇U) dV .

Sincea is a constant vector we can take it outside the integral signs, and finally choosing the casesa = i, j
andk in turn, we prove Eq. 4.9.
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4.5 Green’s Theorem (in the plane)

(See Thomas 16.4: we take the statement he gives as Theorem 4,reworded. Note that the right side is a
component of a curl.)

Theorem 4.2 (Green’s Theorem:) IfC is a simple closed curve in the x-y plane, traversed counterclockwise,
and M and N are suitably differentiable functions of x and y, then

∫

C

(Mdx+Ndy) =

∫ ∫

R

(

∂N
∂x

− ∂M
∂y

)

dxdy,

where the area integral is over the regionR enclosed by the curveC .

Note that if asked to state the theorem you must state the nature ofC (“simple closed”) and the direction
in which it is travelled.

Proof: The proof is an application of the Divergence Theorem, choosing a volume of height 1 in the
z-direction aboveR. (Or, if one proves Stokes’s theorem first, of that theorem.)TakeF = (N,−M,0): then

∫

(∇ ·F)dV =

∫ 1

z=0

∫ ∫

(

∂N
∂x

− ∂M
∂y

)

dxdydz

=

∫ ∫

(

∂N
∂x

− ∂M
∂y

)

dxdy

on integrating overz from 0 to 1. On the top and bottom of the volume, dS is in the±k direction soF.dS= 0.
On the rest of the surface we have

∫

F.dS=

∫ ∫

NdSx−MdSy

where dSx is the component of dS along thex-axis. Using drC = (dx, dy, 0) alongC and dr z = (0, 0, dz) in
thez-direction, dS= drC ×dr z gives dSx = dydzand dSy = −dxdz, so

∫

F.dS =

∫ ∫

S
N dydz+

∫ ∫

S
M dxdz

=

∫

C
N dy+

∫

C
M dx.

where the second line follows because thez integral runs from 0 to 1 and the integrand is independent ofz;
now we have proved the two sides of the theorem are equal.

(Thomas’s Theorem 3 is the same withN replaced byM andM replaced by−N. This version makes
the right side look like a two-dimensional divergence. Sometimes you may see these called Green’s theorem
(first form) and Green’s Theorem (second form) etc. )

Example 4.9. Use Green’s theorem to evaluate
∫

(

xydy−y2 dx
)

around the unit square: straight path segments from the origin to (1,0) to (1,1) to (0,1) and back to the
origin.

In this case,M = −y2 andN = xy; hence

∂N
∂x

− ∂M
∂y

= y+2y= 3y
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Thus the required integral is
∫ 1

0

∫ 1

0
3y dydx =

∫ 1

0
(3/2) dx = 3/2.

4.5.1 Area within a curve

From Green’s Theorem, we can get a surprising expression forthe areaA inside a closed curveC bounding a
regionS in a plane is

nA = 1
2

∮

C
r ×dr ,

wheren is the unit normal to the plane. We can assume without loss of generality that the plane of the curve
is thex, y plane. Thenn = k andr ×dr ∝ k, so we only need thezcomponent of the integral which is

1
2

∮

C
(xdy−ydx).

By Green’s theorem in the plane this equals

1
2

∫

S
2 dxdy=

∫

S
1 dxdy= Area insideC.

This can be useful for example if we are given a curve in parametric form (x,y) = ( f (t),g(t)) which
contains a closed loop, and we want the area of the loop: sincethe curve has a closed loop, then there are
two values oft1,t2 where the curve returns to the same point, and (as long as the curve does not cross itself
betweent1,t2), we can evaluate the enclosed area within that loop using the above formula as

A =
1
2

∫ t2

t1
x(t)

dy
dt

−y(t)
dx
dt

dt (4.10)

A neat example of this is the case of the ellipse,x = acost, y = bsint ; this clearly is a closed loop for
t1 = 0, t2 = 2π , and we obtain the area as

A =
1
2

∫ 2π

0
(abcos2 t +absin2 t) dt = πab .

4.6 Stokes’s Theorem

(See Thomas 16.7)
The other major theorem of similar character to the Divergence Theorem is Stokes’s theorem which follows.
(Because both are versions of then-dimensional Stokes’s theorem, we can prove Stokes’s theorem from
Green’s and thence from the Divergence Theorem, which we do in section 4.9. It can also be proved directly.)
We reword Thomas’s version.

Theorem 4.3 [Stokes’s theorem]: IfF is a (suitably differentiable) vector field, andC is a closed path
bounding an oriented surfaceS , then

∫

C

F.dr =
∫

S

(∇×F).n dS≡
∫

S

(∇×F).dS, (4.11)

whereC is travelled counterclockwise with respect to the unit normal n of S (i.e. counterclockwise as seen
from the positiven side ofS ).
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Again note that if asked to state the theorem, you must state thatC is closed, that it boundsS , and that the
directions of dS and dr are related as given above.

It is easy to show that Green’s theorem is a planar version of this result.

Note that the result is the same for any surfaceS whose boundary isC , so any two surfacesS1, S2 with
the same bounding curveC give the same surface integral. ( We will not give a formal proof of this, but in a
nutshell it is because
∇ · (∇×F) = 0 from Eq. 3.12, then applying the Divergence theorem to the volume enclosed between the
two surfaces). This can simplify integration a lot if the bounding curve lies in a plane, since we can replace a
surface integral over a curved surface with that over the flatsurface with the same boundary.

To emphasize the need for differentiability conditions, consider

F =
−yi +xj
x2 +y2 .

We can easily verify that∇×F = 0 (except on thez axis where it diverges). But we can also show that
∮

F.dr 6= 0 if we go around thez axis: for example going round a circle of radiusa using a parametrization
(acosθ , asinθ )we would have

∫

F ·dr =

∮

a−2(−asinθ i +acosθ j).(−asinθ i +acosθ j) dθ =

∮

dθ = 2π .

This occurs because our closed curve has looped around thez−axis where there is infinite curl; if you do the
Complex Variables module in Semester B, this is very similarto a contour integral around a pole.

Example 4.10. Use the surface integral in Stokes’s theorem to calculate the circulation of the fieldF

F = x2i +2xj +z2k

around the curveC , whereC is the ellipse 4x2+y2 = 4 in thex-y plane, taken counterclockwise when viewed
from z> 0.

In Stokes’s Theorem, we can chooseany surface that spans the curveC . The easiest one in this case is
just the planar surfacez= 0 contained inside the ellipse (so we can use Green’s theoremin fact). Thusn will
be purely in thez-direction:n = k, and so we only need to calculate thez-component of∇×F:

(∇×F).k =
∂F2

∂x
− ∂F1

∂y
=

∂ (2x)
∂x

− ∂x2

∂y
= 2.

Integrating this over the elliptical area is easy: the answer is just 2 times the area of the ellipse. The area of
an ellipse isπab, wherea is one semi-major axis length (in this case 1) andb is the other semi-major axis
length (in this case 2). Hence the answer is 4π .

As in the case of the Divergence Theorem, we can give a vector form of Stokes’s Theorem. Given a scalar
field U , we letF = Ua for some constant vectora. Then

∫

C

Ua · dr =

∫

S

(∇× (Ua)) ·dS

=

∫

S

((∇U)×a) ·dS

= a.
∫

S

dS× (∇U).

The first line is Stokes’ theorem, the second follows from therule Eq 3.8 for curl of a product, and the third
from the rules for the scalar triple product. Now we can take the constanta outside the integral sign; then
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choosinga = i, j andk in turn, we derive the vector equation
∫

C

U dr =

∫

S

dS× (∇U) .

Exercise 4.6. State Stokes’s theorem.
Evaluate both sides of the theorem for the vector fieldF = yi + zj + yk and the surfaceSof the hemisphere
x2 + y2 + z2 = 4 in z≥ 0, with normal in the positivez-direction. [You may find the expressions relating
Cartesian and spherical polar coordinates useful.] 2

Exercise 4.7. Use the surface integral in Stokes’s theorem to calculate the circulation of the fieldF

F = 2yi +3xj −z2k

around the curveC whereC is the circlex2 +y2 = 9 in thex-y plane, counterclockwise when viewed from
z> 0. [Answer 9π .] 2

We can use the Divergence and Stokes’s theorems to derive other results including, later on, the forms of
divergence and curl in curvilinear coordinates in Chapter 5. Those formulas could be found, more laboriously,
by direct calculation from the Cartesian definitions by applying the chain rule. Another important application
will be given next.

4.7 Conservative Fields and Scalar Potentials

(See Thomas 16.3)
Conservative vector fields play an important role in many applications. A vector fieldF is said to be a
conservative fieldiff the value of the line integral

∫ Q
P F · dr between endpoints P and Q depends only on

the endpoints P and Q, andnot on the path taken between them. An example of a vector field which is
not conservative is the one in Example 4.2 – we explicitly found different answers for the same endpoints,
depending on the path taken.

For a conservative vector fieldF, the integral
∫

F.dr around anyclosedpath must be zero (because the
value will be given by the trivial path which always stays at the given point). So ifF is a force, for example,
the net work in going round a path back to where one started is zero: energy is conserved, hence the name
conservative (nothing to do with politics).

We first state and prove the important result that (subject todifferentiability conditions) a vector field is
conservative iff it is irrotational (or curl-free). In its statement, ‘contractible’ means we can continuously
deform the region so it squashes to a point. (A torus, for example, is not contractible.)

Theorem 4.4 In a contractible region,

∇×F = 0 ⇐⇒ ∃a scalar fieldφ(r) such thatF = ∇φ . (4.12)

Note: Such aφ is called a(scalar) potential for F. The theorem says a vector field is conservative iff it has
a scalar potential.

Proof:

(⇐): This was done at the end of Chapter 3, where we proved the identity ∇× (∇φ) = 0 for any φ ,
subject to the partial derivatives being well-behaved. Thus if F = ∇φ then∇×F = 0.
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(⇒): Given∇×F = 0, we proceed by defining the scalar fieldφ(r) by

φ(r) =
∫ r

a
F.dr , (4.13)

wherea is an arbitrary but fixed point; note the line integral has a scalar answer, soφ is a scalar field. We will
soon show that∇φ = F as required. First though, since we have not defined the path to be taken froma to r ,
we must show that the integral is independent of the path taken, i.e. that theφ defined above is well-defined.

Suppose thatC1 andC2 are two different curves froma to r . We need to show that
∫

C1

F.dr =

∫

C2

F.dr .

To prove this, letC be the closed curve formed by followingC1 from a to r and then takingC2 backwards
to get fromr back toa. Let S be a surface whose boundary isC . Then:

∫

C1

F.dr −
∫

C2

F.dr =

∫

C

F.dr

=

∫

S

(∇×F).dS

= 0

The first line is because followingC∈ backwards gives us a minus sign in the line integral; the second line
is Stokes’ theorem for the closed curveC . Hence, the value ofφ only depends onr , but not on the path
taken froma to r , and soφ(r) is well-defined. [Note: Thomas gives a direct proof of the path-independence
property forF = ∇V.]

Next we need to show∇φ = F as we wanted: we consider a small changeδ r , and we get a small change
δφ ,

δφ ≡ φ(r + δ r)−φ(r) =

∫ r+δ r

r
F ·dr ≈ F(r) ·δ r ,

and this is true for any (infinitesimal) vectorδ r . But by definition of∇φ in Chapter 1,δφ = (∇φ) ·δ r . Hence

∇φ ·δ r = F ·δ r .

But this is true forall δ r , so∇φ = F , as we wanted to show. Q.E.D.

Once we have done this, we easily get the line integral
∫

F · dr between any two points, sayr1 to r2:
choose a path fromr1 back toa, and then froma to r2; since taking a line integral backwards gives us a
minus sign in the result (as for swapping upper/lower limitsin a 1D integral), we get

∫ r2

r1

F ·dr = φ(r2)−φ(r1)

Also note that we can add a constant toφ without changing∇φ ; adding a constant is essentially equivalent
to changing our choice of fixed pointa in eq. 4.13, sinceφ(a) = 0 from the original definition.

In the case whereF is a force, it is usual to defineφ(r) = −∫ r
a F.dr with an extra (arbitrary) minus sign

compared to (4.13); then we getF = −∇φ , andφ can then be identified with the potential energy, which
decreases when a body moves in the direction of the force “down”, and increases in the opposite direction
“up”. Note again that the value ofφ is only fixed up to an additive constant, which depends on the choice of
reference pointa.

Warning: There is a possible snag with notation here: it is very commonfor historical reasons to use
the symbolφ (the Greek letter “phi”) for a scalar potential, or sometimes V by analogy with Voltage in
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electrostatics. Thatφ is obviouslynot related to the coordinate angleφ which will appear later in spherical
polar coordinates; or alsoV can possibly get confused with volume. Sometimes the symbols Φ (uppercase
phi) or ϕ (curly phi) are used for the potential, but this still looks quite similar.

Unfortunately, this somewhat confusing notation is heavily used in many textbooks and old exam ques-
tions, so it can’t be escaped and you just have to be aware of it. In most cases it is reasonably obvious from
the context which is which.

Example 4.11. Show thatF = (z, z, x+y) satisfies∇×F = 0, and find a scalar fieldφ such thatF = ∇φ .

[Note that in answering questions of this sort, where you have to findφ , you might as well do that first since
F = ∇φ immediately implies∇×F = 0.]

A simple way to do these problems is by direct evaluation of the line integral (4.13), taking as the curveC

as the straight line from the origin (so we are takinga to be the origin) to the desired point,(X, Y, Z) say. The
line is r = t(X, Y, Z), 0≤ t ≤ 1, so dr = (X, Y, Z)dt, while for this example, on that lineF = (Zt, Zt, Xt+Yt).
Thus the integral is

∫

C

F.dr =

∫ 1

0
[XZt+YZt+(Xt+Yt)Z]dt = (2XZ+2YZ)

∫ 1

0
t dt = (2XZ+2YZ)[t2]10 = XZ+YZ.

Hence for a general point we haveφ = xz+ yz. We can also add any constant toφ (since it will disappear
in ∇φ ): this expresses the freedom of choice of thea in (4.13). [In physical uses of scalar potentials, the
reference point is often taken to be at infinity.]

An alternative method is as follows: it is included to emphasize some useful points about integrating sets
of partial differential equations (i.e. differential equations with partial derivatives).

We want

(z, z, x+y) =

(

∂φ
∂x

,
∂φ
∂y

,
∂φ
∂z

)

. (4.14)

Equating the first components and integrating with respect to x gives

z=
∂φ
∂x

= z⇒ φ = xz+ f (y,z) (4.15)

where f is an (as yet) arbitrary function ofy and z. Note that f is a ‘constant of integration’ as far as
differentiation with respect tox is concerned: when integrating partial derivatives we haveto replace simple
constants by functions of those variables not yet taken intoaccount. The second components give

z=
∂φ
∂y

from (4.14)=
∂ f
∂y

from (4.15).

Hence
∂ f
∂y

= z⇒ f (y,z) = yz+g(z) .

No x appears ing since we already know thatf does not depend onx. So, substituting this in (4.15),

φ = xz+yz+g(z) (4.16)

(g arbitrary as yet). Finally, the third components similarlygive

x+y=
∂φ
∂z

from (4.14)= x+y+
dg
dz

from (4.16).

Henceg has a zero derivative, i.e. is constant and there is aφ given by

φ = xz+yz+const.
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(We could drop the constant here as without itφ would still fulfil the conditions of the problem.) Hence
∇×F = 0.

Example 4.12. The gravitational force on a ball of massm is F = (0,0,−mg). If the gravitational
accelerationg can be assumed to be constant (which is an excellent approximation for everyday life:g ≃
9.8ms−2) thenF = −∇φ whereφ = mgz+const.,z being measured, say, from the surface of the Earth. (We
can measurez from wherever we wish, since a change of origin just changes the arbitrary constant inφ ). In
this caseφ is thegravitational potential energy.

Exercise 4.8.Show thatF = (yz, zx, xy) is conservative and find a suitable potentialφ such thatF = ∇φ .
[Answer:φ = xyz+const.] 2

Exercise 4.9. For each of the following fieldsF, evaluate∇×F and either find the general solutionφ
satisfyingF = ∇φ everywhere, or show that no suchφ exists:

(a)F = x2i +y2j +2zk

(b) F = z2i +x2j +y2k

(c) F = 3z2i +3y2j +6xzk

(d) F = yzj −xyk.

2

The rest of this chapter will not be lectured and is not examinable. It is included for reference, for
completeness, and to give intellectual respectability by proving the main theorems.

4.8 Vector Potentials

(Note: this is not on the syllabus. It is included for completeness, for the sake of those who take later courses
where it is used.)

We have seen that, if∇×F = 0, then there exists a scalar potentialφ such thatF = ∇φ . There is a similar
result if ∇ ·F = 0 instead:

Theorem 4.5 In a contractible domain,

∇ ·F = 0 ⇐⇒ ∃A(r) such thatF = ∇×A.

In the (⇐) direction, this is the identity discussed before. The proofin the other direction consists of
writing down suitable integrals, in a way analogous to the proof of (4.12), and is messy so we omit it.

The functionA is called avector potential. Note that one can always add an arbitrary function of the
form ∇φ to A and get another perfectly good vector potential forF, because∇× (∇φ) is zero for anyφ , and
so

∇× (A + ∇φ) = ∇×A + ∇× (∇φ) = F+0 = F.
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In physical contexts this is referred to as a gauge transformation, and provides the basic example whose
generalization gives all the modern gauge field theories of physics, the basis of our understanding of all
microsopic physical processes.

Example 4.13. Any magnetic fieldB satisfies∇ ·B = 0. So, for example, consider a constant magnetic
field B = (0,0,B0) in thez−direction. A suitable vector potentialA in this case is

(

− 1
2

B0y,
1
2

B0x,0

)

,

since

∇×A =

(

∂Az

∂y
− ∂Ay

∂z
,

∂Ax

∂z
− ∂Az

∂x
,

∂Ay

∂x
− ∂Ax

∂y

)

=

(

0−0,0−0,
1
2

B0− (− 1
2

B0)

)

= B.

4.9 Derivations of the main theorems

(See Thomas 16.7 and 16.8)
[This section is not examinable]

We now return to the proofs of the Divergence and Stokes’s Theorems.

Consider first the “proof” of the Divergence Theorem using rectangular boxes. Take a box[x1, x2]×
[y1, y2]× [z1, z2]. Then for a vectorA = A1i +A2j +A3k,

∫

(∇ ·A)dV =

∫ ∫ ∫

(

∂A1

∂x
+

∂A2

∂y
+

∂A3

∂z

)

dxdydz

=

∫ ∫

[A1]
x2
x1

dydz+

∫ ∫

[A2]
y2
y1

dxdz+

∫ ∫

[A3]
z2
z1

dxdy

=

∫ ∫

front
A1dydz−

∫ ∫

back
A1dydz+

∫ ∫

right end
A2dxdz−

∫ ∫

left end
A2dxdz (4.17)

+

∫ ∫

top
A3dxdy−

∫ ∫

bottom
A3dxdy.

On the front of the box (i.e. the surfacex= x2) dS= idydzwhile on the back (x= x1) dS=−idydzso the first
two terms in (4.17) are

∫

A.dS for the front and back. Similarly for the remaining terms.

One can complete a “proof” by decomposing a volume into such boxes and adding the results, noting that
the surface integrals on a face common to two boxes will cancel one another. This overlooks the difficulty of
proving that the surface integral for all the boxes gives a correct limit for the smooth surface (for the volume
integral this just follows from the definition of such integrals).

Instead we can work towards a correct proof by first noting that the terms match up in the sense that
∫ ∫ ∫

D

∂A3

∂z
dxdydz=

∫ ∫

S

A3(dS)z (4.18)

for the box. (What we thus really do is prove the theorem forF = A3k and then add together three such
results.)
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We now have to cope with some technical points
1. We must be able to integrate the derivatives ofA once. A sufficient condition is that all first derivatives of
A are piecewise continuous. If the derivatives have discontinuities we have to do the proof for each smooth
piece separately and then add the results.
2. That first point impliesA itself must be piecewise continuous.
3. We require the surface to be bounded (so we have a finite area) and closed (so we have a finite volume).
4. We must to be able to integrate

∫

A.dS. So we want to be able to assign coordinates on pieces of the
surface S, say(u, v), in such a way that(eu×ev)dudv can be defined and calculated, i.e. we want the map
R

2 → R
3 : (u, v) → (x(u, v), y(u, v), z(u, v)) to be (piecewise) sufficiently differentiable.

These assumptions ensure we can break D up into convex pieces. ’Convex’ means that any line cuts the
surface at most twice. So now we have the form

Theorem 4.6 If S is a bounded closed piecewise smooth orientable surface enclosing a volumeD , and ifF
is a vector field all of whose first derivatives are continuous, then

∫

D

∇ ·FdV =

∫

S

F.ndS=

∫

S

F.dS,

wheren is the normal outward-pointing fromD .

Figure 4.3: Convex surface used in the proof of the Divergence Theorem

Proof: [This proof is more-or-less identical, with slight changes in notation, with the one given by
Thomas.] We breakD into convex pieces and first prove the result for a single convex piece (which we
call D1). In fact we need only prove (4.18). Consider lines parallelto thez-axis. Those which meetD1

either meet it twice or touch it on a closed curve. Divide the surface intoS + andS −, the upper and lower
halves (i.e.S − is where the lines parallel to thez-axis first meetS : see Figure 4.3). Then, just using the
fundamental theorem of calculus,

∫ ∫ ∫

D1

∂A3

∂z
dxdydz=

∫ ∫

S +
A3(x, y, z2)dxdy−

∫ ∫

S −
A3(x, y, z1)dxdy
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OnS +, (A3k).dS= A3|dS|cosγ = A3dxdy and similarly onS −. Hence we have shown that

∫ ∫ ∫

D1

∂A3

∂z
dxdydz=

∫ ∫

S

(A3k).dS.

and adding similar results forA1 and A2 we get the Divergence Theorem forD1. When we re-combine
the convex pieces, the surfaces where they join appear twicein the surface integrals, once with each of the
two possible signs for the normal, so these parts cancel one another and only the integral over the bounding
surface remains. Q.E.D.

We showed above that the Divergence Theorem implies Green’stheorem. We only have Stokes’s theorem
left to prove. The conditions are arrived at by similar considerations to those for the Divergence Theorem.

Theorem 4.7 For any piecewise smooth surfaceS bounded by a piecewise smooth curveC on which∇×F
is piecewise continuous,

∫

S

∇×F.dS=

∮

C

F.dr ,

where the integral roundC is taken in the direction which is counter-clockwise as seenfrom the side ofS
pointed to bydS.

Proof: The conditions imply that the surface can be decomposed in pieces which project to regions in
one of the planes of Cartesian coordinates; without loss of generality say the(x, y) plane. We prove the result
for one such region. Suppose we have coordinates(u, v) on this region. We also consider only the terms
involving P whereF = (P, Q, R) (i.e. we prove the result forF = Pi first).

∮

C

Pdx =

∮

C

P

(

∂x
∂u

du+
∂x
∂v

dv

)

=
∫ ∫

[

− ∂
∂v

(

P

(

∂x
∂u

))

+
∂
∂u

(

P

(

∂x
∂v

))]

dudv by Green’s theorem

=

∫ ∫

(

∂P
∂u

∂x
∂v

− ∂P
∂v

∂x
∂u

)

dudv

=

∫ ∫

((

∂P
∂x

∂x
∂u

+
∂P
∂y

∂y
∂u

+
∂P
∂z

∂z
∂u

)

∂x
∂v

−
(

∂P
∂x

∂x
∂v

+
∂P
∂y

∂y
∂v

+
∂P
∂z

∂z
∂v

)

∂x
∂u

)

dudv

using the Chain Rule

=

∫ ∫ ∂P
∂y

(

∂y
∂u

∂x
∂v

− ∂y
∂v

∂x
∂u

)

dudv+

∫ ∫ ∂P
∂z

(

∂z
∂u

∂x
∂v

− ∂z
∂v

∂x
∂u

)

dudv

and taking the cross product of

dru =

(

∂x
∂u

i +
∂y
∂u

j +
∂z
∂u

k
)

du,

dr v =

(

∂x
∂v

i +
∂y
∂v

j +
∂z
∂v

k
)

dv,

easily shows that the double integrals give

∫ ∫

(

−∂P
∂y

(dS)z+
∂P
∂z

(dS)y

)

which is the part of∇×F.dS involving P. To complete the proof we add the parts withQ andR and add
together the results from the pieces into which a generalS has to be split. Q.E.D.
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